已知函數(shù),.已知函數(shù)有兩個(gè)零點(diǎn),且.
(1)求的取值范圍;
(2)證明隨著的減小而增大;
(3)證明隨著的減小而增大.
(1)的取值范圍是;(2)詳見試題分析;(3)詳見試題分析.
解析試題分析:(1)先求函數(shù)的導(dǎo)數(shù),再分和討論的單調(diào)性,將“函數(shù)有兩個(gè)零點(diǎn)”等價(jià)轉(zhuǎn)化為如下條件同時(shí)成立:“1°;2°存在,滿足;3°存在,滿足”,解相應(yīng)的不等式即可求得的取值范圍;(2)由分離出參數(shù):.利用導(dǎo)數(shù)討論的單調(diào)性即可得: ,從而;類似可得.又由,得,最終證得隨著的減小而增大;(3)由,,可得,,作差得.設(shè),則,且解得,,可求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)來(lái)證明隨著的減小而增大.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)若對(duì)任意x1∈[0,1],存在x2∈[1,2],使,求實(shí)數(shù)a的取值范圍?
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)().
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù),曲線在點(diǎn)處的切線與軸交點(diǎn)的橫坐標(biāo)為.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
(本小題滿分13分)
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
為圓周率,為自然對(duì)數(shù)的底數(shù).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f′(x).如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
(1)由,可得.下面分兩種情況討論:
(1)時(shí),在上恒成立,可得在上單調(diào)遞增,不合題意.
(2)時(shí),由,得.當(dāng)變化時(shí),,的變化情況如下表:+ 0 - ↗
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
⑴ 若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,求在上的最小值;
⑵ 若存在,使,求的取值范圍.
(1)求;
(2)證明:當(dāng)時(shí),曲線與直線只有一個(gè)交點(diǎn).
設(shè)函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在內(nèi)存在兩個(gè)極值點(diǎn),求的取值范圍.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求,,,,,這6個(gè)數(shù)中的最大數(shù)與最小數(shù);
(3)將,,,,,這6個(gè)數(shù)按從小到大的順序排列,并證明你的結(jié)論.
(1)設(shè)函數(shù)f(x)=ln x+ (x>1),其中b為實(shí)數(shù).
①求證:函數(shù)f(x)具有性質(zhì)P(b);
②求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)具有性質(zhì)P(2).給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.
(1)當(dāng)時(shí),求的極值;
(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
版權(quán)聲明:本站所有文章,圖片來(lái)源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無(wú)意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來(lái)函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)