【題目】已知函數(shù)fx)=2x,gx)=x2ax(其中aR.對于不相等的實數(shù)x1,x2,設m,n,現(xiàn)有如下命題:

對于任意不相等的實數(shù)x1,x2,都有m0;

對于任意的a及任意不相等的實數(shù)x1,x2,都有n0

對于任意的a,存在不相等的實數(shù)x1x2,使得mn;

對于任意的a,存在不相等的實數(shù)x1,x2,使得m=-n.

其中真命題有___________________(寫出所有真命題的序號).

【答案】①④

【解析】對于,因為f 'x)=2xln20恒成立,故正確

對于,取a=-8,即g'x)=2x8,當x1x24n0,錯誤

對于,令f 'x)=g'x),即2xln22xa

hx)=2xln22x,則h'x)=2xln222

存在x00,1),使得hx0)=0,可知函數(shù)hx)先減后增,有最小值.

因此,對任意的a,mn不一定成立.③錯誤

對于,由f 'x)=-g'x),即2xln2=-2xa

hx)=2xln22x,則h'x)=2xln2220恒成立,

hx)是單調遞增函數(shù),

x→時,hx

x→時,hx

因此對任意的a,存在ya與函數(shù)hx)有交點.④正確

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,

1求函數(shù)的最小正周期及取得最大值時對應的x的值;

2在銳角三角形ABC中,角AB、C的對邊為a、b、c,若,求三角形ABC面積的最大值并說明此時該三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)求證:當時, ;

)若函數(shù)在(1,+∞)上有唯一零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為R的函數(shù)f(x),若f(x)在(-∞,0)和(0,+∞)上均有零點,則稱函數(shù)f(x)為“含界點函數(shù)”,則下列四個函數(shù)中,不是“含界點函數(shù)”的是(  )

A. f(x)=x2bx-1(b∈R) B. f(x)=2-|x-1|

C. f(x)=2xx2 D. f(x)=x-sin x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=x3-kx,其中實數(shù)k為常數(shù).

(1)當k=4時,求函數(shù)的單調區(qū)間;

(2)若曲線y=f(x)與直線y=k只有一個交點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) .

(1)若函數(shù)上單調遞增,求的取值范圍;

(2)設函數(shù),若對任意的,都有 ,求的取值范圍;

(3)設,點是函數(shù)的一個交點,且函數(shù)在點處的切線互相垂直,求證:存在唯一的滿足題意,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,目前微信用戶已達10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進入微商渠道,讓這個行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產(chǎn)業(yè)轉型升級,某品牌飲料公司對微商銷售情況進行中期調研,從某地區(qū)隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?

(2)從隨機抽取的6家微商中再任取2家舉行消費者回訪調查活動,求恰有1家是優(yōu)秀微商的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域為,如果存在正實數(shù),使得對任意,都有,且恒成立,則稱函數(shù)上的“的型增函數(shù)”,已知是定義在上的奇函數(shù),且在時, ,若上的“2017的型增函數(shù)”,則實數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,點OAB上,且OBOCAB,PO⊥平面ABC,DAPODAAOPO.

(1)求證:PB∥平面COD;

(2)求二面角OCDA的余弦值.

查看答案和解析>>

同步練習冊答案