【題目】已知點(diǎn)A(1,2),B(﹣3,﹣1),若圓x2+y2=r2(r>0)上恰有兩點(diǎn)M,N,使得△MAB和△NAB的面積均為5,則r的取值范圍是

【答案】(1,3)
【解析】解:由題意可得|AB|= =5,根據(jù)△MAB和△NAB的面積均為5,

可得兩點(diǎn)M,N到直線AB的距離為2.

由于AB的方程為 ,即3x﹣4y+5=0.

若圓上只有3個(gè)點(diǎn)到直線AB的距離為2,

則有圓心(0,0)到直線AB的距離 =r﹣2,解得r=3,

又圓上的點(diǎn)到AB的距離最大值為1+r(只有一個(gè)點(diǎn)),故當(dāng)r≤1時(shí)1+r≤2,不可能存在兩點(diǎn)到AB的距離都是2.

故r>1

此時(shí)AB與圓相交

要滿足題意,則r﹣1<2得r<3

∴1<r<3

所以答案是:(1,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知cosB= ,tanC= . (Ⅰ)求tanB和tanA;
(Ⅱ)若c=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的減函數(shù),其導(dǎo)函數(shù)f′(x)滿足 +x<1,則下列結(jié)論正確的是(
A.對(duì)于任意x∈R,f(x)<0
B.對(duì)于任意x∈R,f(x)>0
C.當(dāng)且僅當(dāng)x∈(﹣∞,1),f(x)<0
D.當(dāng)且僅當(dāng)x∈(1,+∞),f(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+ ,其中a為大于零的常數(shù)..
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值;
(3)求證:對(duì)于任意的n∈N* , 且n>1時(shí),都有l(wèi)nn> + +…+ 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線 =1(a>0,b>0)的左右焦點(diǎn)分別為F1 , F2 , |F1F2|=4,P是雙曲線右支上的一點(diǎn),F(xiàn)2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|PQ|=1,則雙曲線的離心率是(
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形ABCD的三個(gè)頂點(diǎn)的坐標(biāo)為A(﹣1,5),B(﹣2,﹣1),C(2,3).

(1)求平行四邊形ABCD的頂點(diǎn)D的坐標(biāo);
(2)在△ACD中,求CD邊上的高所在直線方程;
(3)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a2=4,a3=10,若{an+1﹣an}是等比數(shù)列,則 i=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)O為△ABC的外心,角A,B,C的對(duì)邊分別滿足a,b,c, (Ⅰ)若3 +4 +5 = ,求cos∠BOC的值;
(Ⅱ)若 = ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不經(jīng)過坐標(biāo)原點(diǎn)的直線與圓交于不同的兩點(diǎn).若直線的斜率與直線斜率滿足,求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案