【題目】已知函數(shù).
(1)若,求出函數(shù)的單調(diào)區(qū)間及最大值;
(2)若且,求函數(shù)在上的最大值的表達(dá)式.
【答案】(1)增區(qū)間為,減區(qū)間為;最大值為;(2)分類討論,詳見解析.
【解析】
(1)先求解導(dǎo)數(shù),判斷單調(diào)性,然后可得最值;
(2)先求解導(dǎo)數(shù),分類討論或,結(jié)合導(dǎo)數(shù)在區(qū)間上的符號(hào),及根的大小關(guān)系,進(jìn)行分類求解.
(1)由已知,時(shí),,
故,
由得,所以的增區(qū)間為遞增;
由得,所以的減區(qū)間為在;
所以.
(2),
,即時(shí),所以在遞增,在遞減,
下面比較與大。
①當(dāng),即或時(shí),
,
②當(dāng),即或時(shí),
.
,即時(shí),由可得,,
下面比較,大小:
①當(dāng),即時(shí),在遞增,在遞減,在遞增,
又,故,
由知,
,
故;
②當(dāng),即時(shí),在遞增,在遞減,在遞增,
則,
而(利用重要不等式)
又,知,故,
所以;
③當(dāng),即時(shí),,即在單調(diào)遞增,
;
綜上所述,
當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市據(jù)實(shí)際情況主要采取以下四種扶貧方式:第一,以工代賑方式,指政府投資建設(shè)基礎(chǔ)設(shè)施工程,組織貧困地區(qū)群眾參加工程建設(shè)并獲得勞務(wù)報(bào)酬,第二,整村推進(jìn)方式指以貧困村為具體幫扶對(duì)象,幫扶對(duì)口到村,資金安排到村,扶貧效益到戶,第三,科技扶貧方式,指組織科技人員深入貧困鄉(xiāng)村實(shí)地指導(dǎo)、技術(shù)培訓(xùn)等傳授科技知識(shí),第四,移民搬遷方式,指對(duì)目前極少數(shù)居住在生存條件惡劣、自然資源貧乏地區(qū)的特困人口,實(shí)行自愿移民,該市為了2020年更好的完成精準(zhǔn)扶貧各項(xiàng)任務(wù),2020年初在全市貧困戶(分一般貧困戶和“五特”戶兩類)中隨機(jī)抽取了5000戶就目前的主要四種扶貧方式行了問卷調(diào)查,支持每種扶貧方式的結(jié)果如表:
調(diào)查的貧困戶 | 支持以工代賑戶數(shù) | 支持整村推進(jìn)戶數(shù) | 支持科技扶貧戶數(shù) | 支持移民搬遷戶數(shù) |
一般貧困戶 | 1200 | 1600 | 200 | |
五特戶(五保戶和特困戶) | 100 | 100 |
已知在被調(diào)查的5000戶中隨機(jī)抽取一戶支持整村推進(jìn)的概率為0.36.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的貧困戶中抽取50戶進(jìn)行深入訪談,問應(yīng)在支持科技扶貧戶數(shù)中抽取多少戶?
(Ⅱ)雖然“五特”戶在全市的貧困戶所占比例不大,但本次調(diào)查要有意義,其中這次調(diào)查的“五特”戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%,已知,求本次調(diào)查有意義的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體中,是棱的中點(diǎn),是側(cè)面上的動(dòng)點(diǎn),且平面,記與的軌跡構(gòu)成的平面為.
①,使得;
②直線與直線所成角的正切值的取值范圍是;
③與平面所成銳二面角的正切值為;
④正方體的各個(gè)側(cè)面中,與所成的銳二面角相等的側(cè)面共四個(gè).
其中正確命題的序號(hào)是________.(寫出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的極值;
(2)若為整數(shù),,且,不等式成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線交曲線于兩點(diǎn),為中點(diǎn).
(1)求曲線的直角坐標(biāo)方程和點(diǎn)的軌跡的極坐標(biāo)方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù).
(1)求單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明:若、是函數(shù)的兩個(gè)零點(diǎn),則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù).
(1)求單調(diào)區(qū)間;
(2)當(dāng)時(shí),在上有三個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項(xiàng)和為,且,(,).
(1)求數(shù)列的通項(xiàng)公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).
(1)求拋物線C的方程;
(2)①求證:四邊形是平行四邊形.
②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com