【題目】已知一個正四面體和一個正四棱錐,它們的各條棱長均相等,則下列說法:
①它們的高相等;②它們的內(nèi)切球半徑相等;③它們的側(cè)棱與底面所成的線面角的大小相等;④若正四面體的體積為,正四棱錐的體積為,則;⑤它們能拼成一個斜三棱柱.其中正確的個數(shù)為( )
A.1個B.2個C.3個D.4個
【答案】B
【解析】
①,正四面體的高,正四棱錐的高,所以該命題錯誤;
②,設(shè)正四面體的內(nèi)切球半徑為.設(shè)正四棱錐的內(nèi)切球半徑為則.所以該命題不正確;
③,在正四面體中,就是側(cè)棱和底面所成的角,.在正四棱錐中,就是側(cè)棱和底面所成的角,,所以該命題不正確;
④,計算得.所以該命題正確;
⑤,把一個斜三棱柱分解成一個正四面體和正四棱錐,所以該命題正確.
設(shè)正四面體和正四棱錐的棱長都為,
①,,
所以正四面體的高.
如圖,正四棱錐的棱長都為2,它的高,
所以該命題不正確;
②,設(shè)正四面體的內(nèi)切球半徑為
則,所以.
設(shè)正四棱錐的內(nèi)切球半徑為則
,所以.
所以該命題不正確;
③,在正四面體中,就是側(cè)棱和底面所成的角,.
在正四棱錐中,就是側(cè)棱和底面所成的角,,
所以該命題不正確;
④,若正四面體的體積為,,
正四棱錐的體積為,,則.
所以該命題正確;
⑤,如圖,是一個斜三棱柱,其中四棱錐是一個棱長都為2的正四棱錐,四面體是棱長都為2的正四面體,所以它們能拼成一個斜三棱柱.所以該命題正確.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,以橢圓的頂點為頂點的四邊形的面積為,且該四邊形內(nèi)切圓的半徑為.
(1)求橢圓的方程;
(2)設(shè)是過橢圓中心的任意一條弦,直線是線段的垂直平分線,若是直線與橢圓的一個交點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且函數(shù)為偶函數(shù),當(dāng)時,,若有三個零點,則實數(shù)的取值集合是( )
A.,B.,
C.,D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)組織“學(xué)習(xí)強國”的知識競賽,從參加競賽的市民中抽出40人,將其成績分成以下6組:第1組,第2組,第3組,第4組,第5組,第6組,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為( )
A.1,3,4B.2,3,3C.2,2,4D.1,1,6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半正多面體亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面組成的多面體.如將正四面體所有棱各三等分,沿三等分點從原幾何體割去四個小正四面體如圖所示,余下的多面體就成為一個半正多面體,若這個半正多面體的棱長為2,則這個半正多面體的體積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,平面,是棱上的一點.
(1)證明:平面平面;
(2)若,是的中點,,,且二面角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)設(shè)計一項綜合學(xué)科的考查方案:考生從6道備選題中一次性隨機抽取三道題,按照題目要求獨立完成全部實驗操作,已知在6道備選題中,考生甲有4道題能正確完成,兩道題不能正確完成;考生乙每道題正確完成的概率都是,且每道題正確完成與否互不影響.
(1)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列;
(2)分別求甲、乙兩考生正確完成題數(shù)的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程.
(1)若曲線與只有一個公共點,求的值;
(2)為曲線上的兩點,且,求的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)考試中,從甲,乙兩個班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計分析,他們成績的莖葉圖如圖所示,成績不小于90分為及格.
(1)從兩班10名同學(xué)中各抽取一人,在有人及格的情況下,求乙班同學(xué)不及格的概率;
(2)從甲班10人中取一人,乙班10人中取兩人,三人中及格人數(shù)記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com