【題目】側(cè)棱垂直于底面的棱柱叫做直棱柱.

側(cè)棱不垂直于底面的棱柱叫作斜棱柱.

底面是正多邊形的直棱柱叫作正棱柱.

底面是平行四邊形的四棱柱叫作平行六面體.

側(cè)棱與底面垂直的平行六面體叫作直平行六面體.

底面是矩形的直平行六面體叫作長方體.

棱長都相等的長方體叫作正方體.

請根據(jù)上述定義,回答下面的問題(填“一定”、“不一定”“一定不”):

(1)直四棱柱________是長方體;

(2)正四棱柱________是正方體.

【答案】 不一定 不一定

【解析】根據(jù)上述定義知:長方體一定是直四棱柱,但是直四棱柱不一定是長方體;正方體一定是正四棱柱,但是正四棱柱不一定是正方體.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在定義域內(nèi)存在實(shí)數(shù),使得成立,則稱為函數(shù)可增點(diǎn).

(1)判斷函數(shù)是否存在可增點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由;

(2)若函數(shù)上存在可增點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱柱有幾條側(cè)棱,幾個(gè)頂點(diǎn) (  )

A. 四條側(cè)棱、四個(gè)頂點(diǎn) B. 八條側(cè)棱、四個(gè)頂點(diǎn)

C. 四條側(cè)棱、八個(gè)頂點(diǎn) D. 六條側(cè)棱、八個(gè)頂點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題“三角形內(nèi)角中至多有一個(gè)鈍角”,假設(shè)正確的是( )

A. 假設(shè)三個(gè)內(nèi)角都是銳角 B. 假設(shè)三個(gè)內(nèi)角都是鈍角

C. 假設(shè)三個(gè)內(nèi)角中至少有兩個(gè)鈍角 D. 假設(shè)三個(gè)內(nèi)角中至少有兩個(gè)銳角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于棱柱的說法中,錯(cuò)誤的是(  )

A. 三棱柱的底面為三角形

B. 一個(gè)棱柱至少有五個(gè)面

C. 若棱柱的底面邊長相等,則它的各個(gè)側(cè)面全等

D. 五棱柱有5條側(cè)棱、5個(gè)側(cè)面,側(cè)面為平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)求在區(qū)間上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等腰直角三角形,其中, 點(diǎn)、分別是

的中點(diǎn),現(xiàn)將沿著邊折起到位置, 使,連結(jié)、

求證:BCPB

求PC與平面ABCD所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空間四邊形ABCD中,若AB=AD=AC=CB=CD=BD,則AC與BD所成角為 (  )

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),.

)求的單調(diào)區(qū)間和極值;

)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案