【題目】若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)﹣g(x)=ex , 則有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

【答案】D
【解析】解:用﹣x代換x得:f(﹣x)﹣g(﹣x)=ex , 即f(x)+g(x)=﹣ex ,
又∵f(x)﹣g(x)=ex
∴解得: ,
分析選項可得:
對于A:f(2)>0,f(3)>0,g(0)=﹣1,故A錯誤;
對于B:f(x)單調遞增,則f(3)>f(2),故B錯誤;
對于C:f(2)>0,f(3)>0,g(0)=﹣1,故C錯誤;
對于D:f(x)單調遞增,則f(3)>f(2),且f(3)>f(2)>0,而g(0)=﹣1<0,D正確;
故選D.
因為函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),所以f(﹣x)=﹣f(x),g(﹣x)=g(x).
用﹣x代換x得:f(﹣x)﹣g(﹣x)=﹣f(x)﹣g(x)=ex , 又由f(x)﹣g(x)=ex聯(lián)立方程組,可求出f(x),g(x)的解析式進而得到答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,其中為自然對數(shù)的底數(shù).

(Ⅰ)設(其中的導函數(shù)),判斷上的單調性;

(Ⅱ)若無零點,試確定正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的多面體中, 是平行四邊形, 是矩形, , , .

(Ⅰ)求證:平面平面

(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份中5天的日銷售量(單位:千克)與該地當日最低氣溫(單位: )的數(shù)據(jù),如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回歸方程

2)判斷之間是正相關還是負相關;若該地1月份某天的最低氣溫為6,請用所求回歸方程預測該店當日的營業(yè)額.

: 回歸方程 ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點, 求實數(shù)的取值范圍;

() 證明:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=loga (a>0,且a≠1).
(1)證明f(x)為奇函數(shù);
(2)求使f(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 是奇函數(shù),且f(2)=
(1)求實數(shù)m和n的值;
(2)判斷函數(shù)f(x)在(﹣∞,0)上的單調性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=4n,數(shù)列{bn}滿足b1=-3,

bn1bn+(2n-3)(n∈N*).

(1)求數(shù)列{an}的通項公式;

(2)求數(shù)列{bn}的通項公式;

(3)cn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

同步練習冊答案