4.已知直線l,m,n,a,b,平面α,β,γ,有以下命題:
①l∥α,l⊥a⇒a⊥α
②m∥α,n∥α⇒n∥m
③m⊥γ,n⊥γ⇒m∥n
④α⊥γ,β⊥γ⇒α∥β
⑤a∥b,a⊥α⇒b⊥α
⑥a?α,b?β,α∥β⇒a∥b
其中不正確的命題是①②④⑥.

分析 對6個選項分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:①l∥α,l⊥a,則a、α關(guān)系不確定;
②m∥α,n∥α,則n∥m或n,m相交、異面,不正確;
③m⊥γ,n⊥γ,根據(jù)線面垂直的性質(zhì),可得m∥n,正確;
④α⊥γ,β⊥γ,則α、β關(guān)系不確定;
⑤a∥b,a⊥α,根據(jù)線面垂直的性質(zhì),可得b⊥α,正確;
⑥a?α,b?β,α∥β,則a,b共面時a∥b,不正確.
故答案為①②④⑥.

點評 本題考查線面、面面位置關(guān)系的判定與運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列結(jié)論正確的是(  )
A.圓錐的頂點與底面圓周上的任意一點的連線都是母線
B.以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊繞旋轉(zhuǎn)軸旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐
C.棱錐的側(cè)棱長與底面多邊形的邊長都相等,則該棱錐可能是六棱錐
D.各個面都是三角形的幾何體是三棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知正數(shù)x、y滿足:2x+y-xy=0,則x+2y的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x|-2<x<1},B={x|0<x<2},則集合A∪B=(  )
A.{x|-1<x<1}B.{x|-2<x<2}C.{x|0<x<1}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,若邊c=$\sqrt{3}$,b=1,∠C=60°
(1)求角B的大小;
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.冪函數(shù)f(x)=xm是偶函數(shù),在x∈(0,+∞)為增函數(shù),則m的值為(2)(3)
(1)-1;(2)2;(3)4;(4)-1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx(x>0)}\\{(\frac{4}{3π})^{x}(x≤0)}\end{array}\right.$,則f(f(-1))的值為( 。
A.$\frac{3π}{4}$B.$\frac{\sqrt{2}}{2}$C.-sin1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a=c>0,f(1)=1,對任意x∈|[-2,2],f(x)的最大值與最小值之和為g(a),求g(a)的表達(dá)式;
(2)若a,b,c為正整數(shù),函數(shù)f(x)在(-$\frac{1}{4}$,$\frac{1}{4}$)上有兩個不同零點,求a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列結(jié)論:
①命題“?x∈R,x2+x≥0”的否定是“?x∈R,x2+x<0”;
②命題“若x2+2x+q=0有不等實根,則q<1”的逆否命題是真命題;
③命題“平行四邊形的對角線互相平分”的否命題是真命題;
④命題$p:?x∈R,{x^2}-x+\frac{1}{2}<0$;命題q:設(shè)A,B,C為△ABC的三個內(nèi)角,若A<B,則sinA<sinB.命題p∨q為假命題.
其中,正確結(jié)論的個數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

同步練習(xí)冊答案