11.要得到函數(shù)y=sin(5x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=cos5x的圖象( 。
A.向左平移$\frac{3π}{20}$個(gè)單位B.向右平移$\frac{3π}{20}$個(gè)單位
C.向左平移$\frac{3π}{4}$個(gè)單位D.向右平移$\frac{3π}{4}$個(gè)單位

分析 利用誘導(dǎo)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:∵函數(shù)y=cos5x=sin(5x+$\frac{π}{2}$)=sin5(x+$\frac{π}{10}$),y=sin(5x-$\frac{π}{4}$)=sin5(x-$\frac{π}{20}$),$\frac{π}{10}$+$\frac{π}{20}$=$\frac{3π}{20}$,
故把函數(shù)y=cos5x的圖象的圖象向右平移$\frac{3π}{20}$個(gè)單位,
可得函數(shù)y=sin(5x-5•$\frac{3π}{20}$+$\frac{π}{2}$)=sin(5x-$\frac{π}{4}$)的圖象,
故選:B.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|x+a|(a∈R).
(1)若a=1,解不等式f(x)+|x-3|≤2x;
(2)若不等式f(x)+|x-1|≥3在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知文具盒中有5支鉛筆,其中3支紅色,2支黃色.現(xiàn)從這5只鉛筆中任取2支,這兩支鉛筆顏色恰好不同的概率為(  )
A.0.4B.0.6C.0.8D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,若m=8,則輸出的結(jié)果是( 。
A.2B.$\frac{7}{3}$C.3D.$\frac{13}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=$\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x),那么關(guān)于x的不等式f(2x-6)+f(x)>0的解集為(  )
A.{x|x>-2}B.{x|x>2}C.{x|0<x<2}D.{x|-2<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,下列命題中正確的是(  )
A.若m∥n,m∥α,則n∥αB.若m、n?α,m∥β,n∥β,則α∥β
C.若m⊥α,n∥α,則m⊥nD.若m⊥α,α⊥β,m∥n,則n∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在長(zhǎng)方體ABCD-A1B1C1D1的十二條棱中,與面對(duì)角線AC垂直且異面的棱的條數(shù)是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在△ABC中,a=$\sqrt{7}$,b=2,A=60°,則c=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.定義max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,已知函數(shù)f(x)=max{|2x-1|,ax2+b},其中a<0,b∈R,若f(0)=b,則實(shí)數(shù)b的范圍為[1,+∞),若f(x)的最小值為1,則a+b=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案