下列說法正確的是( 。
①在殘差圖中,殘差點的帶狀區(qū)域的寬度越寬,說明模型擬合精度越高,回歸方程的預(yù)報精度越高;
②在殘差圖中,殘差點的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報精度越高;
③在線性回歸模型中,R2越接近于1,擬合效果越差;
④在線性回歸模型中,R2越接近于1,擬合效果越好.
A、①③B、②④C、①④D、②③
考點:相關(guān)系數(shù)
專題:常規(guī)題型,概率與統(tǒng)計
分析:在殘差圖中,殘差點的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報精度越高;R2越接近于1,擬合效果越好.
解答: 解:因為在殘差圖中,殘差點的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報精度越高;
故①不正確,②正確;
因為在線性回歸模型中,R2越接近于1,擬合效果越好.
故③不正確,④正確.
故選B.
點評:本題考查了模型擬合精度的判斷方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某校為宣傳縣教育局提出的“教育發(fā)展,我的責(zé)任”教育實踐活動,要舉行一次以“我為教育發(fā)展做什么”為主題的演講比賽,比賽分為初賽、復(fù)賽、決賽三個階段進行,已知某選手通過初賽、復(fù)賽、決賽的概率分別是
2
3
1
3
,
1
4
,且各階段通過與否相互獨立.
(Ⅰ)求該選手在復(fù)賽階段被淘汰的概率;
(Ⅱ)設(shè)該選手在比賽中比賽的次數(shù)為ξ,求ξ的分布列、數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln(2x+1)+bx+1.
(1)若函數(shù)y=f(x)在x=1處取得極值,且曲線y=f(x)在點(0,f(0))處的切線與直線2x+y-3=0平行,求a和b的值;
(2)若b=
1
2
,試討論函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于使f(x)≥M成立的所有常數(shù)M中,我們把M的最大值叫做f(x)的下確界,若lga+lgb=0,則
b
1+a2
+
a
1+b2
的下確界為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2ωx-
π
6
)+1(ω>0,x∈R)的最小正周期為π.
(1)求f(x)的解析式,并求出函數(shù)的單調(diào)遞增區(qū)間;
(2)求x∈[
π
4
,
π
2
]時,函數(shù)f(x)的最大值與最小值;
(3)試列表描點作出f(x)在[0,π]范圍內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
d
=
b
-
a
•(
a
b
)
|
a
|2
關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間直線a、b、c,平面α,則下列命題中真命題的是( 。
A、若a⊥b,c⊥b,則a∥c
B、若a∥α,b∥α,則a∥b
C、若a與b是異面直線,a與c是異面直線,則b與c也是異面直線
D、若a∥c,c⊥b,則b⊥a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知B=60°,
(1)若a=(
3
-1)c,求角A的大小;
(Ⅱ)若b=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:在x∈[1,2]時,不等式x2+ax-2>0恒成立;命題q:函數(shù)f(x)=x3+ax在[1,+∞)上是增函數(shù).若命題“p∨q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案