函數(shù)f(x)=
ax2+1,x≥0
(a2-1)2ax,x<0
,在(-∞,+∞)上單調(diào)遞增,則a的取值范圍是( 。
分析:先分區(qū)間使函數(shù)f(x)在每個(gè)區(qū)間上都單調(diào)遞增,再保證(a2-1)2a×0≤a×02+1,解出a的范圍取交集即可.
解答:解:因?yàn)楹瘮?shù)f(x)在(-∞,+∞)上單調(diào)遞增,
則①當(dāng)x≥0時(shí),f(x)=ax2+1是單調(diào)遞增函數(shù),所以a>0.
②當(dāng)x<0時(shí),f(x)=(a2-1)2ax是單調(diào)遞增函數(shù),所以f′(x)=aln2•(a2-1)2ax≥0,
因?yàn)閍>0,所以a≥1.
當(dāng)a=1時(shí)f(x)=0不具有單調(diào)性,所以a=1舍去,所以a>1.
又函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增,
所以(a2-1)2a×0≤a×02+1,解得-
2
≤a≤
2

由以上可得1<a≤
2
,即a的取值范圍為(1,
2
].
故選B.
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性的性質(zhì),解決這種分段函數(shù)單調(diào)性問(wèn)題的關(guān)鍵是先分區(qū)間保證函數(shù)單調(diào),再保證最值之間滿(mǎn)足大小關(guān)系即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(
13
≤a≤1)
的圖象過(guò)點(diǎn)A(0,1),且在該點(diǎn)處的切線(xiàn)與直線(xiàn)2x+y+1=0平行.
(Ⅰ)求b與c的值;
(Ⅱ)設(shè)f(x)在[1,3]上的最大值與最小值分別為M(a),N(a),求F(a)=M(a)-N(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=
ax2+ax+1
的定義域?yàn)槿w實(shí)數(shù)集R,那么實(shí)數(shù)a的取值范圍是(  )
A、[0,4]
B、[0,4)
C、[4,+∞)
D、(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
ax2+1x+b
,在定義域上是奇函數(shù)且f(1)=3,
(1)求a,b的值,寫(xiě)出f(x)的表達(dá)式;
(2)判斷f(x)在[1,+∞)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)f(x)=a
x
2
 
+bx+c(a≠0)
的圖象和直線(xiàn)y=x無(wú)交點(diǎn),現(xiàn)有下列結(jié)論:
①方程f[f(x)]=x一定沒(méi)有實(shí)數(shù)根;
②若a>0,則不等式f[f(x)]>x對(duì)一切實(shí)數(shù)x都成立;
③若a<0,則必存存在實(shí)數(shù)x0,使f[f(x0)]>x0
④若a+b+c=0,則不等式f[f(x)]<x對(duì)一切實(shí)數(shù)都成立;
⑤函數(shù)g(x)=a
x
2
 
-bx+c
的圖象與直線(xiàn)y=-x也一定沒(méi)有交點(diǎn).
其中正確的結(jié)論是
①②④⑤
①②④⑤
(寫(xiě)出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax2-(1+a)x+1

(1)當(dāng)a=0時(shí),求證函數(shù)f(x)在它的定義域上單調(diào)遞減
(2)是否存在實(shí)數(shù)a使得區(qū)間[-1,1]上一切x都滿(mǎn)足f(x)≤
3
,若存在,求實(shí)數(shù)a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案