【題目】在等差數(shù)列中,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)對(duì)任意,將數(shù)列中落入?yún)^(qū)間內(nèi)的項(xiàng)的個(gè)數(shù)記為,記數(shù)列的前項(xiàng)和為,求使得的最小整數(shù);
(3)若 ,使不等式成立,求實(shí)數(shù)的取值范圍.
【答案】(1) (2) 最小整數(shù)m為6 (3)
【解析】
(1)設(shè)數(shù)列{an}的公差為d,根據(jù)已知條件列出關(guān)于首項(xiàng)和公差的方程組,求出首項(xiàng)和公差,即可得到通項(xiàng)公式.(2)由數(shù)列落入?yún)^(qū)間內(nèi)的個(gè)數(shù)為,可得到bm=22m﹣2m,m∈N*,利用等比數(shù)列求和公式求得Sm,解不等式,即可得到答案.(3)將不等式變量分離,轉(zhuǎn)為求數(shù)列的最值,從而得到λ的范圍.
(1)設(shè)數(shù)列的公差為d,由.
得,故數(shù)列的通項(xiàng)公式為.
(2)對(duì)任意,若,
則
故
,
令,
解得.
故所求最小整數(shù)m為6;
(3).
記,.
由
知,且從第二項(xiàng)起,遞增,
即
而遞減,
故實(shí)數(shù)的范圍為.即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,⊥平面且.
(1)求證:平面⊥平面;
(2)若設(shè)與平面所成夾角為,且,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù), +1.
(1)若,曲線y=f(x)與在x=0處有相同的切線,求b;
(2)若,求函數(shù)的單調(diào)遞增區(qū)間;
(3)若對(duì)任意恒成立,求b的取值區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0,則稱x0是f(x)的一個(gè)不動(dòng)點(diǎn),已知f(x)=x2+ax+4在[1,3]恒有兩個(gè)不同的不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則方程()的實(shí)數(shù)根個(gè)數(shù)不可能為( )
A. 5個(gè) B. 6個(gè) C. 7個(gè) D. 8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).
(1)若m=2,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】劉老師是一位經(jīng)驗(yàn)豐富的高三理科班班主任,經(jīng)長期研究,他發(fā)現(xiàn)高中理科班的學(xué)生的數(shù)學(xué)成績(總分150分)與理綜成績(物理、化學(xué)與生物的綜合,總分300分)具有較強(qiáng)的線性相關(guān)性,以下是劉老師隨機(jī)選取的八名學(xué)生在高考中的數(shù)學(xué)得分x與理綜得分y(如下表):
學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分?jǐn)?shù)x | 52 | 64 | 87 | 96 | 105 | 123 | 132 | 141 |
理綜分?jǐn)?shù)y | 112 | 132 | 177 | 190 | 218 | 239 | 257 | 275 |
參考數(shù)據(jù)及公式: .
(1)求出y關(guān)于x的線性回歸方程;
(2)若小汪高考數(shù)學(xué)110分,請(qǐng)你預(yù)測(cè)他理綜得分約為多少分?(精確到整數(shù)位);
(3)小金同學(xué)的文科一般,語文與英語一起能穩(wěn)定在215分左右.如果他的目標(biāo)是在
高考總分沖擊600分,請(qǐng)你幫他估算他的數(shù)學(xué)與理綜大約分別至少需要拿到多少分?(精確到整數(shù)位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)貨卡車以每小時(shí)千米的速度勻速行駛千米,按交通法規(guī)則限制(單位:千米/小時(shí)),假設(shè)汽油的價(jià)格是每升元,而汽車每小時(shí)耗油升,司機(jī)工資是每小時(shí)元.
(1)求這次行車總費(fèi)用關(guān)于的表達(dá)式;
(2)當(dāng)為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.(精確到)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com