【題目】已知過(guò)拋物線)的焦點(diǎn),斜率為的直線交拋物線于, )兩點(diǎn),且.

(1)求該拋物線的方程;

2為坐標(biāo)原點(diǎn), 為拋物線上一點(diǎn),若,求的值.

【答案】(1) (2)0或2.

【解析】試題分析:1)由題意求得焦點(diǎn)坐標(biāo),得到直線方程,和拋物線方程聯(lián)立,利用弦長(zhǎng)公式求得p,則拋物線方程可求;
2)由(1)求出A,B的坐標(biāo)結(jié)合, ,求出C的坐標(biāo),代入拋物線方程求得λ值.

試題解析:

(1)設(shè)直線AB方程為:y=

聯(lián)立

由韋達(dá)定理得:

由拋物線定理知:

|AB|=|AF|+|BF|=

得:即p=4

∴拋物線方程為

(2)由p=4,方程化為

解得x1=1, x2=4.A(1,-2) B(4,4

2)+(4,4

代入拋物線方程

.

解得: =0或=2 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面底面,,,,的中點(diǎn),側(cè)棱

(1)求證:平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】天氣預(yù)報(bào)是氣象專(zhuān)家根據(jù)預(yù)測(cè)的氣象資料和專(zhuān)家們的實(shí)際經(jīng)驗(yàn),經(jīng)過(guò)分析推斷得到的,在現(xiàn)實(shí)的生產(chǎn)生活中有著重要的意義.某快餐企業(yè)的營(yíng)銷(xiāo)部門(mén)經(jīng)過(guò)對(duì)數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營(yíng)情況與降雨天數(shù)和降雨量的大小有關(guān).

(Ⅰ)天氣預(yù)報(bào)說(shuō),在今后的四天中,每一天降雨的概率均為,求四天中至少有兩天降雨的概率;

(Ⅱ)經(jīng)過(guò)數(shù)據(jù)分析,一天內(nèi)降雨量的大小(單位:毫米)與其出售的快餐份數(shù)成線性相關(guān)關(guān)系,該營(yíng)銷(xiāo)部門(mén)統(tǒng)計(jì)了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:

降雨量(毫米)

1

2

3

4

5

快餐數(shù)(份)

50

85

115

140

160

試建立關(guān)于的回歸方程,為盡量滿足顧客要求又不造成過(guò)多浪費(fèi),預(yù)測(cè)降雨量為6毫米時(shí)需要準(zhǔn)備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))

附注:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年5月20日,針對(duì)部分“二線城市”房?jī)r(jià)上漲過(guò)快,媒體認(rèn)為國(guó)務(wù)院常務(wù)會(huì)議可能再次確定五條措施(簡(jiǎn)稱(chēng)“國(guó)五條”).為此,記者對(duì)某城市的工薪階層關(guān)于“國(guó)五條”態(tài)度進(jìn)行了調(diào)查,隨機(jī)抽取了人,作出了他們的月收入的頻率分布直方圖(如圖),同時(shí)得到了他們的月收入情況與“國(guó)五條”贊成人數(shù)統(tǒng)計(jì)表(如下表):

月收入(百元)

贊成人數(shù)

(1)試根據(jù)頻率分布直方圖估計(jì)這人的中位數(shù)和平均月收入;

(2)若從月收入(單位:百元)在的被調(diào)查者中隨機(jī)選取人進(jìn)行追蹤調(diào)查,求被選取的人都不贊成的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)棱底面, , 是棱的中點(diǎn).

(Ⅰ)證明:平面平面;

(Ⅱ)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐,底面是邊長(zhǎng)為2的菱形, ,且平面.

1證明:平面平面;

2若平面與平面的夾角為試求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地政府為了對(duì)房地產(chǎn)市場(chǎng)進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門(mén)對(duì)外來(lái)人口和當(dāng)?shù)厝丝谶M(jìn)行了買(mǎi)房的心理預(yù)期調(diào)研,用簡(jiǎn)單隨機(jī)抽樣的方法抽取了110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表(不全):

已知樣本中外來(lái)人口數(shù)與當(dāng)?shù)厝丝跀?shù)之比為3:8.

(1)補(bǔ)全上述列聯(lián)表;

(2)從參與調(diào)研的外來(lái)人口中用分層抽樣方法抽取6人,進(jìn)一步統(tǒng)計(jì)外來(lái)人口的某項(xiàng)收入指標(biāo),若一個(gè)買(mǎi)房人的指標(biāo)記為3,一個(gè)猶豫人的指標(biāo)記為2,一個(gè)不買(mǎi)房人的指標(biāo)記為1,現(xiàn)在從這6人中再隨機(jī)選取3人,求選取的3人的指標(biāo)之和大于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),順次連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為,點(diǎn).

(Ⅰ)求橢圓的方程.

(Ⅱ)已知點(diǎn),是橢圓上的兩點(diǎn).

(ⅰ)若,且為等邊三角形,求的面積;

(ⅱ)若,證明: 不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為平行四邊形,平面平面, ,.

(Ⅰ)求證:

(Ⅱ)若三角形是邊長(zhǎng)為的等邊三角形,求三棱錐外接球的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案