已知|
a
|=3,|
b
|=6,
a
b
的夾角為θ,
(1)若
a
b
,求
a
b
;
(2)若(
a
-
b
)⊥
a
,求θ.
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角,平面向量數(shù)量積的運(yùn)算,數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:(1)當(dāng)
a
b
時(shí),夾角為θ=0°或180°,由數(shù)量積的定義可得;(2)由垂直可得(
a
-
b
)•
a
=0,可得cosθ的方程,解方程可得cosθ,可得θ.
解答: 解:(1)|
a
|=3,|
b
|=6,
a
b
的夾角為θ
當(dāng)
a
b
時(shí),夾角為θ=0°或180°,
a
b
=|
a
||
b
|cosθ=±18;
(2)∵(
a
-
b
)⊥
a
,∴(
a
-
b
)•
a
=0,
a
2
-
a
b
=9-3×6×cosθ=0,
解得cosθ=
1
2
,∴θ=60°
點(diǎn)評(píng):本題考查平面向量的夾角公式,涉及向量的平行和垂直,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是邊長為2的正方形,EA⊥平面ABCD,F(xiàn)C⊥平面ABCD,設(shè)EA=1,F(xiàn)C=2;
(1)證明:平面EAB⊥平面EAD;
(2)求四面體BDEF的體積;
(3)求點(diǎn)B到平面DEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

作為家長都希望自己的孩子能升上比較理想的高中,于是就催生了“名校熱”,這樣擇校的結(jié)果就導(dǎo)致了學(xué)生在路上耽誤的時(shí)間增加了.若某生由于種種原因,每天只能 6:15騎車從家出發(fā)到學(xué)校,途經(jīng)5個(gè)路口,這5個(gè)路口將家到學(xué)校分成了6個(gè)路段,每個(gè)路段的騎車時(shí)間是10分鐘(通過路口的時(shí)間忽略不計(jì)),假定他在每個(gè)路口遇見紅燈的概率均為
1
3
,且該生只在遇到紅燈或到達(dá)學(xué)校才停車.對(duì)每個(gè)路口遇見紅燈情況統(tǒng)計(jì)如下:
紅燈 1 2 3 4 5
等待時(shí)間(秒) 60 60 90 30 90
(1)設(shè)學(xué)校規(guī)定7:20后(含7:20)到校即為遲到,求這名學(xué)生遲到的概率;
(2)設(shè)X表示該學(xué)生上學(xué)途中遇到的紅燈數(shù),求P(X≥2)的值;
(3)設(shè)Y表示該學(xué)生第一次停車時(shí)已經(jīng)通過路口數(shù),求隨機(jī)變量Y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F與l切于B點(diǎn),且△ABF的面積為2.
(Ⅰ)求p的值及圓F的方程;
(Ⅱ)過B作直線與拋物線C交于M(x1,y1),N(x2,y2)兩點(diǎn),是否存在常數(shù)m,使
|FM|
|FN|
=
y1-m
m-y2
恒成立?若存在,求常數(shù)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從5雙不同的鞋子中任取4只,
(1)取出的4只鞋子中至少能配成1雙,有多少種不同的取法?
(2)取出的4只鞋子,任何兩只都不能配成1雙,有多少種不同的取法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-2ax2+bx+c,
(1)當(dāng)c=0時(shí),f(x)在點(diǎn)P(1,3)處的切線平行于直線y=x+2,求a,b的值;
(2)若f(x)在點(diǎn)A(-1,8),B(3,-24)處有極值,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的程序框圖中,當(dāng)輸入實(shí)數(shù)x的值為4時(shí),輸出的結(jié)果為2;當(dāng)輸入實(shí)數(shù)x的值為-2時(shí),輸出的結(jié)果為4.
(l)求實(shí)數(shù)a,b的值,并寫出函數(shù)f(x)的解析式;
(Ⅱ)若輸出的結(jié)果為8,求輸入的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若3+2i(i為虛數(shù)單位)是關(guān)于x的方程x2+px+q=0(p,q∈R)的一個(gè)根,則q的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[-1,1]函數(shù)f(x)=3x+2的值域?yàn)?div id="0cg6mig" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊答案