【題目】已知函數f(x)=( + )x3(a>0,a≠1).
(1)討論函數f(x)的奇偶性;
(2)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.
【答案】
(1)解:定義域為(﹣∞,0)∪(0,+∞),
∵f(﹣x)=( + )(﹣x)3=﹣( + )x3=( + )=f(x)
∴f(x)是偶函數.
(2)解:∵函數f(x)在定義域上是偶函數,
∴函數y=f(2x)在定義域上也是偶函數,
∴當x∈(0,+∞)時,f(x)+f(2x)>0可滿足題意,
∵當x∈(0,+∞)時,x3>0,
∴只需 + + + >0,即 >0,
∵a2x+ax+1>0,
∴(ax)2﹣1>0,解得a>1,
∴當a>1時,f(x)+f(2x)>0在定義域上恒成立.
【解析】(1)由可推知f(﹣x)=f(x),從而可判斷函數f(x)的奇偶性;(2)利用(1)知f(x)為偶函數,可知當x∈(0,+∞)時,x3>0,從而可判知,要使f(x)+f(2x)>0在其定義域上恒成立,只需當a>1時即可.
【考點精析】利用函數的奇偶性對題目進行判斷即可得到答案,需要熟知偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
科目:高中數學 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中點.
(1)求證:平面CFM⊥平面BDF;
(2)點N在CE上,EC=2,FD=3,當CN為何值時,MN∥平面BEF.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|2x﹣a|+|2x+1|(a>0),g(x)=x+2.
(1)當a=1時,求不等式f(x)≤g(x)的解集;
(2)若f(x)≥g(x)恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點,PA⊥底面ABCD,PA=2. (Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B﹣PE﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若圓C1:(x﹣1)2+(y+3)2=1與圓C2:(x﹣a)2+(y﹣b)2=1外離,過直線l:x﹣y﹣1=0上任意一點P分別做圓C1 , C2的切線,切點分別為M,N,且均保持|PM|=|PN|,則a+b=( )
A.﹣2
B.﹣1
C.1
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種零件按質量標準分為1,2,3,4,5五個等級,現從批該零件中隨機抽取20個,對其等級進行統計分析,得到頻率分布表如下:
等級 | 1 | 2 | 3 | 4 | 5 |
頻率 | 0.05 | m | 0.15 | 0.35 | n |
(1)在抽取的20個零件中,等級為5的恰有2個,求m,n的值;
(2)在(1)的條件下,從等級為3和5的所有零件中,任意抽取2個,求抽取的2個零件等級不相同的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com