16.已知數(shù)列$\{\frac{a_n}{n}\}$是等差數(shù)列,且a3=2,a15=30,則a9=( 。
A.12B.24C.16D.32

分析 利用等比數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出a9

解答 解:∵數(shù)列$\{\frac{a_n}{n}\}$是等差數(shù)列,且a3=2,a15=30,
∴$\left\{\begin{array}{l}{\frac{{a}_{3}}{3}={a}_{1}+2d=\frac{2}{3}}\\{\frac{{a}_{15}}{15}={a}_{1}+14d=\frac{30}{15}}\end{array}\right.$,
解得${a}_{1}=\frac{4}{9},d=\frac{1}{9}$,
∴$\frac{{a}_{9}}{9}$=${a}_{1}+8d=\frac{4}{9}+8×\frac{1}{9}$=$\frac{12}{9}$,
a9=$\frac{12}{9}×9=12$.
故選:A.

點(diǎn)評(píng) 本題考查數(shù)列的第9項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.動(dòng)直線l與拋物線C:x2=4y相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若$\overrightarrow{AB}=2\overrightarrow{AG}$,則${(\overrightarrow{OA}-\overrightarrow{OB})^2}-4{\overrightarrow{OG}^2}$的最大值為( 。
A.-16B.8C.16D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等差數(shù)列{an}中的a2、a4030是函數(shù)$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的兩個(gè)極值點(diǎn),則log2(a2016)=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知△ABC中,若sin2A+sin2B<sin2C,則這個(gè)三角形一定是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{6}}{3}$,則tan(π+α)等于(  )
A.-$\sqrt{2}$B.-$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知復(fù)數(shù)z滿足i•z=1-i(其中i為虛數(shù)單位),則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列{an}滿足:an-1+an+1>2an(n>1,n∈N*),給出下述命題:
①若數(shù)列{an}滿足:a2>a1,則an>an-1(n>1,n∈N*)成立;
②存在常數(shù)c,使得an>c(n∈N*)成立;
③若p+q>m+n(其中p,q,m,n∈N*),則ap+aq>am+an;
④存在常數(shù)d,使得an>a1+(n-1)d(n∈N*)都成立.
上述命題正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某次數(shù)學(xué)考試試題中共有10道選擇題,每道選擇題都有4個(gè)選項(xiàng),其中僅有一個(gè)是正確的.評(píng)分標(biāo)準(zhǔn)規(guī)定:“每題只選1項(xiàng),答對(duì)得5分,不答或答錯(cuò)得0分.”某考生每道題都給了一個(gè)答案,已確定有6道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個(gè)選項(xiàng)是錯(cuò)誤的有一道題可以判斷一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道題因不理解題意只能亂猜,試求出該考生:
(Ⅰ)得45分的概率;
(Ⅱ)所得分?jǐn)?shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}3x-2y-3≤0\\ x-3y+6≥0\\ 2x+y-2≥0\end{array}\right.$,在這兩個(gè)實(shí)數(shù)x,y之間插入三個(gè)實(shí)數(shù),使這五個(gè)數(shù)構(gòu)成等差數(shù)列,那么這個(gè)等差數(shù)列最后三項(xiàng)和的最大值為( 。
A.11B.10C.9D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案