如圖, 已知四邊形ABCD和BCEG均為直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.

(1)求證: ECCD;
(2)求證:AG∥平面BDE;
(3)求:幾何體EG-ABCD的體積.

(1)證明過程詳見解析;(2)證明過程詳見解析;(3) 

解析試題分析:(1)要證 ,只要證平面;而由題設平面平面 ,所以平面,結論得證;
(2)過GGNCEBEM,連 DM,由題設可證四邊形為平行四邊形,所以有 
從而由直線與平面平行的判定定理,可證AG∥平面BDE;
(3)欲求幾何體EG-ABCD的體積,可先將該幾何體分成一個四棱錐和三棱錐 .
試題解析:

(1)證明:由平面ABCD⊥平面BCEG,
平面ABCD∩平面BCEG=BC,  平面BCEG,
EC⊥平面ABCD,3分
CD平面BCDA, 故 EC⊥CD4分
(2)證明:在平面BCDG中,過GGNCEBEM,連DM,則由已知知;MG=MN,MNBCDA,且
MGAD,MG=AD, 故四邊形ADMG為平行四邊形,
AGDM6分
DM平面BDE,AG平面BDE, AG∥平面BDE8分
(3)解:  10分
 12分
考點:1、直線與平面垂直、平行的判定與性質;2、空間幾何體的體積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為矩形,平面,,中點,上一點.
(1)求證:平面;
(2)當為何值時,二面角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

四棱錐底面是菱形,,,分別是的中點.

(1)求證:平面⊥平面;
(2)上的動點,與平面所成的最大角為,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在四棱錐中,底面是矩形,且,平面,、分別是線段的中點.

(1)證明:;
(2)判斷并說明上是否存在點,使得∥平面;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在Rt△ABC中,∠ABC=90°,DAC中點,(不同于點),延長AEBCF,將△ABD沿BD折起,得到三棱錐,如圖2所示.

(1)若MFC的中點,求證:直線//平面;
(2)求證:BD;
(3)若平面平面,試判斷直線與直線CD能否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓的直徑,點是圓上異于的點,直線 分別為的中點。

(1)記平面與平面的交線為,試判斷與平面的位置關系,并加以說明;
(2)設(1)中的直線與圓的另一個交點為,且點滿足,記直線
平面所成的角為異面直線所成的銳角為,二面角的大小為
①求證:
②當點為弧的中點時,,求直線與平面所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.

(1)求證:AF∥平面BDE;
(2)求證:CF⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐PABCD中,M、N分別是側棱PA和底面BC邊的中點,O是底面平行四邊形ABCD的對角線AC的中點.求證:過O、M、N三點的平面與側面PCD平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐SABC中,平面SAB⊥平面SBC,ABBC,ASAB.過AAFSB,垂足為F,點E,G分別是棱SASC的中點.

求證:(1)平面EFG∥平面ABC;(2)BCSA.

查看答案和解析>>

同步練習冊答案