某商店試銷某種商品20天,獲得如下數(shù)據(jù):

日銷售量(件)
0
1
2
3
頻數(shù)
1
5
9
5
 
試銷結(jié)束后(假設該商品的日銷售量的分布規(guī)律不變),設某天開始營業(yè)時有該商品3件,當天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存貨少于2件,則當天進貨補充至3件,否則不進貨,將頻率視為概率。
(1)求當天商品不進貨的概率;
(2)記X為第二天開始營業(yè)時該商品的件數(shù),求X的分布列和數(shù)學期望。

(1)
(2)的分布列為


2
3



的數(shù)學期望為。

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(滿分14分)隨機將這2n個連續(xù)正整數(shù)分成A,B兩組,每組n個數(shù),A組最小數(shù)為,最大數(shù)為;B組最小數(shù)為,最大數(shù)為,記
(1)當時,求的分布列和數(shù)學期望;
(2)令C表示事件的取值恰好相等,求事件C發(fā)生的概率;
(3)對(2)中的事件C,表示C的對立事件,判斷的大小關(guān)系,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在某校教師趣味投籃比賽中,比賽規(guī)則是: 每場投6個球,至少投進4個球且最后2個球都投進者獲獎;否則不獲獎. 已知教師甲投進每個球的概率都是
(1)記教師甲在每場的6次投球中投進球的個數(shù)為X,求X的分布列及數(shù)學期望;
(2)求教師甲在一場比賽中獲獎的概率;
(3)已知教師乙在某場比賽中,6個球中恰好投進了4個球,求教師乙在這場比賽中獲獎的概率;教師乙在這場比賽中獲獎的概率與教師甲在一場比賽中獲獎的概率相等嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學在高一開設了數(shù)學史等4門不同的選修課,每個學生必須選修,且只能從中選一門。該校高一的3名學生甲、乙、丙對這4門不同的選修課的興趣相同。
(1)求恰有2門選修課這3個學生都沒有選擇的概率;
(2)設隨機變量為甲、乙、丙這三個學生選修數(shù)學史這門課的人數(shù),求的分布列及期望,方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別的關(guān)系,隨機調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:

     休閑方式
性別  
看電視
看書
合計

10
50
60

10
10
20
合計
20
60
80
 
(1)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X,求X的分布列和數(shù)學期望;
(2)根據(jù)以上數(shù)據(jù),我們能否在犯錯誤的概率不超過0.01的前提下,認為“在20:00-22:00時間段居民的休閑方式與性別有關(guān)系”?
參考公式:K2,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
k0
2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和個黑球(為正整數(shù)).現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球,若取出的4個球均為黑球的概率為,求
(1)的值;
(2)取出的4個球中黑球個數(shù)大于紅球個數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩人各擲一次骰子(均勻的正方體,六個面上分別為1,2,3,4,5,6點),所得點數(shù)分別為x,y
(1)求x<y的概率;
(2)求5<x+y<10的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

小明家訂了一份報紙,寒假期間他收集了每天報紙送達時間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.

(1)根據(jù)圖中的數(shù)據(jù)信息,求出眾數(shù)和中位數(shù)(精確到整數(shù)分鐘);
(2)小明的父親上班離家的時間在上午之間,而送報人每天在時刻前后半小時內(nèi)把報紙送達(每個時間點送達的可能性相等),求小明的父親在上班離家前能收到報紙(稱為事件)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有驅(qū)蟲藥1618和1573各3杯,從中隨機取出3杯稱為一次試驗(假定每杯被取到的概率相等),將1618全部取出稱為試驗成功.
(1)求一次試驗成功的概率.
(2)求恰好在第3次試驗成功的概率(要求將結(jié)果化為最簡分數(shù)).

查看答案和解析>>

同步練習冊答案