橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
1
2
,右焦點(diǎn)F(c,0),方程ax2+bx-c=0的兩個(gè)根分別為x1,x2,則點(diǎn)P(x1,x2)與圓x2+y2=2的位置關(guān)系是
 
分析:由題設(shè)知x1+x2=-
b
a
,x1x2=-
c
a
,x12+x22=(x1+x22-2x1x2=
b2
a2
+
2c
a
=
b2+a2
a2
=
2a2-c2
a2
=2-e2
.由此可知點(diǎn)P(x1,x2)與圓x2+y2=2的位置關(guān)系.
解答:解:∵離心率e=
1
2
,∴a=2c.
∵方程ax2+bx-c=0的兩個(gè)根分別為x1,x2,
x1+x2=-
b
a
x1x2=-
c
a
,
∴x12+x22=(x1+x22-2x1x2
=
b2
a2
+
2c
a
=
b2+2ac
a2

=
b2+a2
a2
=
2a2-c2
a2
=2-e2
<2.
∴點(diǎn)P(x1,x2)在圓x2+y2=2內(nèi).
故答案為:點(diǎn)在圓內(nèi).
點(diǎn)評(píng):本題考查圓錐曲線(xiàn)的性質(zhì)和應(yīng)用,解題時(shí)要要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線(xiàn)方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F1的直線(xiàn)l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線(xiàn)有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),求證:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線(xiàn)有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線(xiàn)段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè) A(x1,y1)、B(x2,y2)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的兩點(diǎn),O為坐標(biāo)原點(diǎn),向量
m
=(
x1
a
,
y1
b
),
n
=(
x2
a
,
y2
b
)
m
n
=0

(1)若A點(diǎn)坐標(biāo)為(a,0),求點(diǎn)B的坐標(biāo);
(2)設(shè)
OM
=cosθ•
OA
+sinθ•
OB
,證明點(diǎn)M在橢圓上;
(3)若點(diǎn)P、Q為橢圓 上的兩點(diǎn),且
PQ
OB
,試問(wèn):線(xiàn)段PQ能否被直線(xiàn)OA平分?若能平分,請(qǐng)加以證明;若不能平分,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川 題型:解答題

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線(xiàn)方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F1的直線(xiàn)l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線(xiàn)l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案