19.已知函數(shù)f(x)=$\frac{1}{x+1}$,則f(f(x))的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x≠-2}B.{x|x≠-1}C.{x|x≠-2且x≠-1}D.{x|x≠0且x≠-1}

分析 求出f(x)的定義域,再求f[f(x)]的定義域.

解答 解:∵函數(shù)f(x)=$\frac{1}{x+1}$,
∴1+x≠0,即x≠-1;
在f[f(x)]中,$\frac{1}{x+1}$≠-1,
∴x≠-2;
∴函數(shù)f[f(x)]的定義域?yàn)閧x|x≠-2,且x≠-1}.
故選:C.

點(diǎn)評 本題考查了求函數(shù)的定義域的問題,解題時應(yīng)根據(jù)函數(shù)f(x)解析式,求出使解析式有意義的x取值范圍,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x>0,y>0,z>0,a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,則下面對a,b,c三個數(shù)的判斷中,正確的判斷是( 。
A.至少有一個不小于2B.都小于2
C.至少有一個不大于2D.都大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x∈R|ax2+x+1=0}中只有一個元素,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合M={0},寫出滿足M∪N={0,2,4}的所有集合N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)集合A={x2,x,xy}、B={1,x,y},若集合A、B所含元素相同,求實(shí)數(shù)x、y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.形如f(x)=$\frac{|x|-a}$(a>0,b>0)的函數(shù)因其圖象類似于漢字的“囧”字,故而生動地稱為“囧函數(shù)”. 若當(dāng)a=1,b=1時的“囧函數(shù)”圖象與函數(shù)y=x2-4圖象的交點(diǎn)個數(shù)為n,則n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,已知a2=b2+$\sqrt{3}$bc+c2,則∠A=150°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{1}{x}$-x(x≠0)是奇函數(shù).(填“奇”“偶”或“非奇非偶”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓F的方程為3x2+2y2=6,F(xiàn)在y軸正半軸上的焦點(diǎn)為M,與x軸正半軸的交點(diǎn)為N,以點(diǎn)M為圓心的圓M經(jīng)過點(diǎn)N.
(1)求圓M的方程;
(2)試判斷點(diǎn)P($\sqrt{3}$cosθ,1+$\sqrt{2}$tsinθ),(0<θ<$\frac{π}{2}$)與圓M的位置關(guān)系,并說明理由;
(3)若直線l經(jīng)過點(diǎn)M且與橢圓F交于A、B兩點(diǎn),當(dāng)$\overrightarrow{AB}$•$\overrightarrow{MN}$=0時求△ABN的面積.

查看答案和解析>>

同步練習(xí)冊答案