(滿分10分)(Ⅰ) 設(shè)橢圓方程
的左、右頂點分別為
,點M是橢圓上異于
的任意一點,設(shè)直線
的斜率分別為
,求證
為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程
的左、右頂點分別為
,點M是橢圓上異于
的任意一點,設(shè)直線
的斜率分別為
,利用(Ⅰ)的結(jié)論直接寫出
的值。(不必寫出推理過程)
(Ⅰ)見解析;(Ⅱ)
。
試題分析:(Ⅰ)
,
…………………………4分
在橢圓上有
得
………………6分
所以
…………………………8分
(Ⅱ)
……………………10分
點評:本題較易,(I)利用直線斜率的坐標(biāo)表示,結(jié)合點在橢圓上,證明了
為定值,(II)則通過類比推理,得出結(jié)論。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,短軸的一個端點到右焦點的距離為
,直線
交橢圓于不同的兩點
。
(1)求橢圓的方程;
(2)若坐標(biāo)原點
到直線
的距離為
,求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分) 設(shè)橢圓E中心在原點,焦點在x軸上,短軸長為4,點M(2,
)在橢圓上,。
(1)求橢圓E的方程;
(2)設(shè)動直線L交橢圓E于A、B兩點,且
,求△OAB的面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)橢圓C:
的左、右焦點分別為
、
,P是C上的點,
⊥
,
∠
=
,則C的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
過點
,且離心率
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)是否存在過點
的直線
交橢圓于不同的兩點
M、
N,且滿足
(其中點
O為坐標(biāo)原點),若存在,求出直線
的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
,
是其左頂點和左焦點,
是圓
上的動點,若
,則此橢圓的離心率是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,已知橢圓
,
是橢圓
的頂點,若橢圓
的離心率
,且過點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)作直線
,使得
,且與橢圓
相交于
兩點(異于橢圓
的頂點),設(shè)直線
和直線
的傾斜角分別是
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C的焦點F
1(-
,0)和F
2(
,0),長軸長6。
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)設(shè)直線
交橢圓C于A、B兩點,求線段AB的中點坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓中,過焦點且垂直于長軸的直線被橢圓截得的線段長為
,焦點到相應(yīng)準(zhǔn)線的
距離也為
,則該橢圓的離心率為
查看答案和解析>>