【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.

(1)求直線和圓的普通方程;

(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.

【答案】(1),;(2)

【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;

(2)把直線的參數(shù)方程代入曲線的直角坐標方程,其中參數(shù)的絕對值表示直線上對應(yīng)點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關(guān)系,由此可求得的取值范圍.

詳解:(1)直線的參數(shù)方程為,

普通方程為,

代入圓的極坐標方程,

可得圓的普通方程為

(2)解:直線的參數(shù)方程為代入圓的方程為 可得

(*),

且由題意 ,

.

因為方程(*)有兩個不同的實根,所以,

,

,

所以.

因為,所以

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c,使等式N+都成立,

(1)猜測a,b,c的值;(2)用數(shù)學歸納法證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某兒童樂園在六一兒童節(jié)推出了一項趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針所指區(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:

,則獎勵玩具一個;

,則獎勵水杯一個;

其余情況獎勵飲料一瓶.

假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻.小亮準備參加此項活動.

)求小亮獲得玩具的概率;

)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,則下列結(jié)論中正確的是

A. 將函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象

B. 函數(shù)圖象關(guān)于點中心對稱

C. 函數(shù)的圖象關(guān)于對稱

D. 函數(shù)在區(qū)間內(nèi)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)兩實數(shù)不相等且均不為.若函數(shù)時,函數(shù)值的取值區(qū)間恰為,就稱區(qū)間的一個“倒域區(qū)間”.已知函數(shù).

1)求函數(shù)內(nèi)的倒域區(qū)間”;

2)若函數(shù)在定義域內(nèi)所有“倒域區(qū)間的圖象作為函數(shù)的圖象,是否存在實數(shù),使得恰好有2個公共點?若存在,求出的取值范圍:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若拋物線的焦點是,準線是,點是拋物線上一點,則經(jīng)過點、且與相切的圓共( )

A. 0個 B. 1個 C. 2個 D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四面體ABCD中,O、E分別是BD、BC的中點,,.

(1)求證:平面BCD;

(2)求異面直線AB與CD所成角的余弦值;

(3)求點E到平面ACD的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用獨立性檢驗的方法調(diào)查高中生的寫作水平與離好閱讀是否有關(guān),隨機詢問120名高中生是否喜好閱讀,利用2×2列聯(lián)表,由計算可得K24.236

PK2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參照附表,可得正確的結(jié)論是(  )

A.95%的把握認為“寫作水平與喜好閱讀有關(guān)”

B.97.5%的把握認為“寫作水平與喜好閱讀有關(guān)”

C.95%的把握認為“寫作水平與喜好閱讀無關(guān)”

D.97.5%的把握認為“寫作水平與喜好閱讀無關(guān)”

查看答案和解析>>

同步練習冊答案