A. | ①③ | B. | ①③④ | C. | ②③ | D. | ①④ |
分析 過圓心的直線都可以將圓的周長和面積同時平分,故①正確;
作函數(shù)$f(x)=ln({{x^2}+\sqrt{{x^2}+1}})$的大致圖象,從而判斷②的正誤;
將圓的圓心放在正弦函數(shù)y=sinx的對稱中心上,則正弦函數(shù)y=sinx是該圓的“優(yōu)美函數(shù)”;即可判斷③的正誤;
函數(shù)y=f(x)的圖象是中心對稱圖形,則y=f(x)是“優(yōu)美函數(shù)”,但函數(shù)y=f(x)是“優(yōu)美函數(shù)”時,圖象不一定是中心對稱圖形,作圖舉反例即可.
解答 解:過圓心的直線都可以將圓的周長和面積同時平分,
故對于任意一個圓O,其“優(yōu)美函數(shù)”有無數(shù)個,故①正確;
函數(shù)$f(x)=ln({{x^2}+\sqrt{{x^2}+1}})$的大致圖象如圖1,故其不可能為圓的“優(yōu)美函數(shù)”;∴②不正確;
將圓的圓心放在正弦函數(shù)y=sinx的對稱中心上,
則正弦函數(shù)y=sinx是該圓的“優(yōu)美函數(shù)”;
故有無數(shù)個圓成立,故③正確;
函數(shù)y=f(x)的圖象是中心對稱圖形,則y=f(x)是“優(yōu)美函數(shù)”,
但函數(shù)y=f(x)是“優(yōu)美函數(shù)”時,圖象不一定是中心對稱圖形,如圖2,
故選:A.
點評 本題考查了學(xué)生的學(xué)習(xí)能力及數(shù)形結(jié)合的思想方法應(yīng)用,命題真假的判斷,函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 4 | C. | 0 | D. | 5-e2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{3π}{8}$ | C. | $\frac{π}{8}$ | D. | $\frac{5π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3<x<-1} | B. | {x|-3<x<0} | C. | {x|-1<x<3} | D. | {x|x>-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
使用時間(單位:天) | 10:20 | 21:30 | 31:40 | 41:50 | 51:60 |
個數(shù) | 10 | 40 | 80 | 50 | 20 |
A. | $\frac{13}{16}$ | B. | $\frac{27}{64}$ | C. | $\frac{25}{32}$ | D. | $\frac{27}{32}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com