設(shè)圓C與兩圓,中的一個(gè)內(nèi)切,另一個(gè)外切.
(1)求C的圓心軌跡L的方程;
(2)設(shè)直線l是圓O:在P(x0,y0)(x0y0 ≠ 0)處的切線,且P在圓上,l與軌跡L相交不同的A,B兩點(diǎn),證明:.

(1).(2)利用數(shù)量積的坐標(biāo)運(yùn)算即可證明垂直關(guān)系

解析試題分析:(1)設(shè)兩圓的圓心分別為F1、F2,圓C的半徑為r
即得     1分
,即得  2分
L是以F1、F2為焦點(diǎn),實(shí)軸長(zhǎng)為2的雙曲線 3分
軌跡L的方程為.              5分
(2)由題可得直線l的方程為       7分

         9分

                     13分
考點(diǎn):本題考查了軌跡的方程及直線與雙曲線的位置關(guān)系
點(diǎn)評(píng):此類軌跡方程的求法利用了定義法,所謂定義法就是立足題中所給的條件,結(jié)合題意導(dǎo)出相應(yīng)的關(guān)系式,之后再根據(jù)特殊曲線的定義得出曲線的方程

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別是,Q是橢圓外的動(dòng)點(diǎn),滿足.點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)T是的中點(diǎn).

(Ⅰ)設(shè)為點(diǎn)的橫坐標(biāo),證明;
(Ⅱ)求點(diǎn)T的軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的右焦點(diǎn)為,直線軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(I)求橢圓的方程;
(II)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(為直徑的兩個(gè)端點(diǎn)),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓過點(diǎn),離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、、為坐標(biāo)原點(diǎn).設(shè)直線、的斜率分別為、

(i)證明:;
(ii)問直線上是否存在點(diǎn),使得直線、、、的斜率、滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,過拋物線>0)的頂點(diǎn)作兩條互相垂直的弦OA、OB。

⑴設(shè)OA的斜率為k,試用k表示點(diǎn)A、B的坐標(biāo);
⑵求弦AB中點(diǎn)M的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓軸負(fù)半軸交于點(diǎn),為橢圓第一象限上的點(diǎn),直線交橢圓于另一點(diǎn),橢圓左焦點(diǎn)為,連接于點(diǎn)D。
(1)如果,求橢圓的離心率; 
(2)在(1)的條件下,若直線的傾斜角為且△ABC的面積為,求橢圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若直線過雙曲線的一個(gè)焦點(diǎn),且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過點(diǎn)軸不平行的直線與雙曲線相交于不同的兩點(diǎn)的垂直平分線為,求直線軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在橢圓上找一點(diǎn),使這一點(diǎn)到直線的距離的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案