【題目】設(shè)函數(shù)(其中).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).

【答案】(1)答案見解析;(2)函數(shù)在定義域上有且只有一個(gè)零點(diǎn).

【解析】試題分析:(1)由題意得函數(shù)函數(shù)的定義域,對(duì)函數(shù)求導(dǎo),再對(duì)進(jìn)行分類討論,根據(jù),可得函數(shù)的單調(diào)區(qū)間;(2)依題意得,結(jié)合第一問的單調(diào)性,結(jié)合函數(shù)的圖象,從兩個(gè)方面考慮函數(shù)的變化趨勢(shì),時(shí),從而可得零點(diǎn)的個(gè)數(shù).

試題解析:(1)函數(shù)的定義域?yàn)?/span>,

①當(dāng)時(shí),令,解得.

的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是

②當(dāng)時(shí),令,解得.

上單調(diào)遞增,在上單調(diào)遞減.

③當(dāng)時(shí),,上單調(diào)遞增.

④當(dāng)時(shí),令,解得,所以上單調(diào)遞增,在上單調(diào)遞減;

(2),①當(dāng)時(shí),由(1)知,當(dāng)時(shí),,此時(shí)無零點(diǎn),當(dāng)時(shí),.

又∵上單調(diào)遞增

上有唯一的零點(diǎn)

∴函數(shù)在定義域上有唯一的零點(diǎn),

②當(dāng)時(shí),由(1)知,當(dāng)時(shí),,此時(shí)無零點(diǎn);當(dāng)時(shí),,.

,則,

上單調(diào)遞增,,

上單調(diào)遞增,得,即.

上有唯一的零點(diǎn),故函數(shù)在定義域上有唯一的零點(diǎn).

綜合①②知,當(dāng)時(shí)函數(shù)在定義域上有且只有一個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

平均每天鍛煉的時(shí)間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.

(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

(2)通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“課外體育達(dá)標(biāo)”性別有關(guān)?

參考公式,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,過且與圓相切的動(dòng)圓圓心為.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)過點(diǎn)的直線交曲線,兩點(diǎn),過點(diǎn)的直線交曲線,兩點(diǎn),且,垂足為,,為不同的四個(gè)點(diǎn)).

①設(shè),證明:;

②求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (是常數(shù)),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知橢圓)的左焦點(diǎn)為,離心率為,過點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過點(diǎn)的直線與橢圓相交于不同兩點(diǎn)、,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的方程是,曲線的參數(shù)方程是為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求直線與曲線的極坐標(biāo)方程;

(2)若射線與曲線交于點(diǎn),與直線交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解戶籍性別對(duì)生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為100的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各50人;男性60人,女性40人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對(duì)應(yīng)比例,則下列敘述中錯(cuò)誤的是( )

A. 是否傾向選擇生育二胎與戶籍有關(guān)

B. 是否傾向選擇生育二胎與性別無關(guān)

C. 傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同

D. 傾向選擇生育二的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線與曲線在公共點(diǎn)處有共同的切線,求實(shí)數(shù)的值;

(Ⅱ)在(Ⅰ)的條件下,試問函數(shù)是否有零點(diǎn)?如果有,求出該零點(diǎn);若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在橢圓 為橢圓的右焦點(diǎn), 分別為橢圓的左,右兩個(gè)頂點(diǎn).若過點(diǎn)且斜率不為0的直線與橢圓交于兩點(diǎn),且線段的斜率之積為.

1求橢圓的方程;

2已知直線相交于點(diǎn),證明: 三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案