甲乙兩船在某港口?6h,假定他們在一晝夜時間中隨機到達(dá),求這兩艘船同時停泊在港口的概率.
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:設(shè)出甲、乙到達(dá)的時刻,列出所有基本事件的約束條件同時列出這兩艘船同時停泊在港口的約束條件,利用線性規(guī)劃作出平面區(qū)域,利用幾何概型概率公式求出概率.
解答: 解:設(shè)甲船到達(dá)時間為x,乙船為y.
聯(lián)立0<x<24,0<y<24,|x-y|<6,
畫出圖象,根據(jù)線性規(guī)劃可得所求圖形面積為252,總面積為576 所以,概率為
252
576
=
7
16
點評:本題考查利用線性規(guī)劃作出事件對應(yīng)的平面區(qū)域,再利用幾何概型概率公式求出事件的概率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的語句:當(dāng)輸入的m=168,n=72時,輸出的結(jié)果為( 。
A、48B、24C、12D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx-sinx,g(x)=axcosx-2sinx(a>0).
(Ⅰ)若曲線y=f(x)上任意相異兩點的直線的斜率都大于零,求實數(shù)m的最小值;
(Ⅱ)若m=1,且對任意x∈[0,
π
2
],都有不等式f(x)≥g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的兩個焦點分別為(-1,0)和(1,0),離心率e=
2
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線l:y=x+m(m≠0)與橢圓E交于A、B兩點,線段AB的垂直平分線交x軸于點T,當(dāng)m變化時,求△TAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωxcosωx-
1
2
cos2ωx,ω>0,x∈R且函數(shù)f(x)的最小正周期為π.
(1)求ω的值和函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,角A、B、C所對的邊分別是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=1,△ABC的面積等于3,求邊長a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足a=4,b=acosC+
3
3
csinA.
(Ⅰ)求角A的大;
(Ⅱ)當(dāng)△ABC的周長最大時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某礦山采煤的單位成本y與采煤量x有關(guān),其數(shù)據(jù)如下
采煤量
(千噸)
2 4 5 6 8
單位成本
(元)
70 50 60 40 30
(1)作出這些數(shù)據(jù)的散點圖.
(2)求出這些數(shù)據(jù)的回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

表面積為144π的球內(nèi)切于一個圓臺(即球與圓臺的上、下底面和側(cè)面都相切),如果圓臺的下底面與上底面的半徑之差為5,求圓臺的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2x+3在[a,a+2]上的最大值為6,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案