分析 (1)由正弦定理及三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知可得:-2sinAcosB=sinA,結(jié)合sinA≠0,可求cosB,結(jié)合B的范圍可求B的值.
(2)由三角形面積公式可求c,進(jìn)而由余弦定理解得ac的值,利用三角形面積公式即可得解.
解答 (本小題滿(mǎn)分12分)
解:(1)由正弦定理及$\frac{cosB}{cosC}=-\frac{2a+c}$得:$\frac{cosB}{cosC}=-\frac{sinB}{2sinA+sinC}$,
∴cosB(2sinA+sinC)=-sinBcosC,
∴2sinAcosB+cosBsinC=-sinBcosC,
∴-2sinAcosB=sin(B+C)=sinA,
∵sinA≠0,
∴$cosB=-\frac{1}{2}$,
∵0<B<π,
∴$B=\frac{2π}{3}$,
(2)由$a=2,B=\frac{2π}{3},S=\frac{1}{2}acsinB=\sqrt{3}$,解得:c=2,
由余弦定理得:b2=a2+c2-2accosB,①
將,a=2,c=2,$B=\frac{2π}{3}$代入①,得$13=16-2ac(1-\frac{1}{2})$,
解得:ac=3,
可得:${S_{△ABC}}=\frac{1}{2}acsinB=\frac{{3\sqrt{3}}}{4}$.
點(diǎn)評(píng) 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{45}{4}$ | B. | 6 | C. | $\frac{45}{8}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24 | B. | 25 | C. | 36 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∧q | B. | p∧(¬q) | C. | (¬p)∧q | D. | ¬p∨q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$) | B. | (-∞,-1)∪(0,+∞) | C. | (-$\frac{2\sqrt{3}}{3}$,0) | D. | (-$\frac{2\sqrt{3}}{3}$,-1)∪({0,$\frac{2\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最大值是$\sqrt{2}$,周期是π | B. | 最小值是-2,周期是2π | ||
C. | 最大值是$\sqrt{2}$,周期是2π | D. | 最小值是-2,周期是π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com