【題目】已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)過(guò)點(diǎn)存在幾條直線與曲線相切,并說(shuō)明理由;
(3)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)增區(qū)間為,,單調(diào)減區(qū)間為;(2)三條切線,理由見解析;(3)
【解析】
(1)對(duì)求導(dǎo),分別令,,得到的單調(diào)區(qū)間;
(2)設(shè)切點(diǎn)坐標(biāo)為,利用導(dǎo)數(shù)得切線斜率,表示出切線方程,代入過(guò)點(diǎn),得到的方程,解出的值,從而得到結(jié)論;
(3)設(shè),分為,,進(jìn)行討論,易得,時(shí)的情況,當(dāng)時(shí),易得時(shí)成立,時(shí),令,利用導(dǎo)數(shù),得到,從而得到的范圍.
(1),
得,或;
得,;
所以的單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為;
(2)過(guò)點(diǎn)可做的三條切線;理由如下:
設(shè)切點(diǎn)坐標(biāo)為,
所以切線斜率
所以過(guò)切點(diǎn)的切線方程為:,
切線過(guò)點(diǎn),代入得,
化簡(jiǎn)得,
方程有三個(gè)解,,,,即三個(gè)切點(diǎn)橫坐標(biāo),
所以過(guò)點(diǎn)可做的三條切線.
(3)設(shè),
①時(shí),因?yàn)?/span>,,所以顯然對(duì)任意恒成立;
②時(shí),若,則不成立,
所以不合題意.
③時(shí),時(shí),顯然成立,
只需考慮時(shí)情況;
轉(zhuǎn)化為對(duì)任意恒成立
令(),
則,
,
當(dāng)時(shí),,單調(diào)減;
當(dāng)時(shí),,單調(diào)增;
所以,
所以.
綜上所述,的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
得到正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”
B. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”
C. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”
D. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在新高考改革中,打破了文理分科的“”模式,不少省份采用了“”,“”,“”等模式.其中“”模式的操作又更受歡迎,即語(yǔ)數(shù)外三門為必考科目,然后在物理和歷史中選考一門,最后從剩余的四門中選考兩門.某校為了了解學(xué)生的選科情況,從高二年級(jí)的2000名學(xué)生(其中男生1100人,女生900人)中,采用分層抽樣的方法從中抽取n名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的n名學(xué)生中含男生110人,求n的值及抽取到的女生人數(shù);
(2)在(1)的情況下對(duì)抽取到的n名同學(xué)“選物理”和“選歷史”進(jìn)行問(wèn)卷調(diào)查,得到下列2×2列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選科目與性別有關(guān)?
選物理 | 選歷史 | 合計(jì) | |
男生 | 90 | ||
女生 | 30 | ||
合計(jì) |
(3)在(2)的條件下,從抽取的“選歷史”的學(xué)生中按性別分層抽樣再抽取5名,再?gòu)倪@5名學(xué)生中抽取2人了解選政治、地理、化學(xué)、生物的情況,求2人至少有1名男生的概率.
參考公式:.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線E:(,)的左、右焦點(diǎn)分別為,,已知點(diǎn)為拋物線C:的焦點(diǎn),且到雙曲線E的一條漸近線的距離為,又點(diǎn)P為雙曲線E上一點(diǎn),滿足.則
(1)雙曲線的標(biāo)準(zhǔn)方程為______;
(2)的內(nèi)切圓半徑與外接圓半徑之比為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線交橢圓于,兩點(diǎn),若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面四邊形中,E,F是,中點(diǎn),,,,將沿對(duì)角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是( )
A.平面B.異面直線與所成的角為90°
C.異面直線與所成的角為60°D.直線與平面所成的角為30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分別是AC,PB的中點(diǎn).
(1)證明:EF∥平面PCD;
(2)求證:面PBD⊥面PAC;
(3)若PA=AB,求PD與平面PAC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機(jī)會(huì),每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學(xué)業(yè)成績(jī)對(duì)學(xué)生進(jìn)行綜合評(píng)估,已知某年度參與評(píng)估的畢業(yè)生共有2000名.其評(píng)估成績(jī)近似的服從正態(tài)分布.現(xiàn)隨機(jī)抽取了100名畢業(yè)生的評(píng)估成績(jī)作為樣本,并把樣本數(shù)據(jù)進(jìn)行了分組,繪制了如下頻率分布直方圖:
(1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若學(xué)校規(guī)定評(píng)估成績(jī)超過(guò)82.7分的畢業(yè)生可參加三家公司的面試.
用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值.請(qǐng)利用估計(jì)值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);
附:若隨機(jī)變量,則,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com