1.設(shè)數(shù)列{an}滿足前n項和Sn=1-an(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log${\;}_{\frac{1}{2}}$an,求證:$\frac{1}{{_{1}}^{2}}+\frac{1}{{_{2}}^{2}}$+…+$\frac{1}{{_{n}}^{2}}$<$\frac{7}{4}$.

分析 (1)利用遞推關(guān)系與等比數(shù)列的通項公式即可得出.
(2)bn=log${\;}_{\frac{1}{2}}$an=n.可得$\frac{1}{_{n}^{2}}$=$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}-\frac{1}{n}$,n≥3時.利用“裂項求和”方法即可得出.

解答 (1)解:∵Sn=1-an(n∈N*),∴n=1時,a1=1-a1,解得a1=$\frac{1}{2}$.
n≥2時,an=Sn-Sn-1=1-an-(1-an-1),解得${a}_{n}=\frac{1}{2}{a}_{n-1}$.
∴數(shù)列{an}是等比數(shù)列,首項與公比都為$\frac{1}{2}$.
∴an=$(\frac{1}{2})^{n}$.
(2)證明:bn=log${\;}_{\frac{1}{2}}$an=n.
∴$\frac{1}{_{n}^{2}}$=$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}-\frac{1}{n}$,n≥3時.
∴$\frac{1}{{_{1}}^{2}}+\frac{1}{{_{2}}^{2}}$+…+$\frac{1}{{_{n}}^{2}}$≤1+$\frac{1}{4}$+$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n})$=$\frac{7}{4}$-$\frac{1}{n}$$<\frac{7}{4}$(n=1,2時也成立).
∴$\frac{1}{{_{1}}^{2}}+\frac{1}{{_{2}}^{2}}$+…+$\frac{1}{{_{n}}^{2}}$<$\frac{7}{4}$.

點評 本題考查了遞推關(guān)系與等比數(shù)列的通項公式、“裂項求和”方法、“放縮法”,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知三角形的頂點A(3,4),B(0,0),C(c,2c-6),若∠BAC是鈍角,則c的取值范圍是($\frac{49}{11}$,+∞)且c≠9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知正△ABC的邊長為a,那么的平面直觀圖△A'B'C'的面積為$\frac{{\sqrt{6}}}{16}{a^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知i是虛數(shù)單位,且集合$M=\left\{{z|z={{({\frac{i-1}{i+1}})}^n},n∈{N^*}}\right\}$,則集合M的非空子集的個數(shù)為( 。
A.16B.15C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用反證法證明“三角形中最多只有一個內(nèi)角是鈍角”的結(jié)論的否定是( 。
A.有兩個內(nèi)角是鈍角B.有三個內(nèi)角是鈍角
C.至少有兩個內(nèi)角是鈍角D.沒有一個內(nèi)角是鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R
(1)當a=1時,求函數(shù)f(x)的最小值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.412°角的終邊在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.觀察新生嬰兒的體重,其頻率分布直方圖如圖所示,則新生嬰兒體重在(2700,3000)內(nèi)的頻率為( 。
A.0.001B.0.1C.0.2D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R)的部分圖象如圖所示.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)的圖象沿x軸方向向右平移$\frac{π}{6}$個單位長度,再把橫坐標縮短到原來的$\frac{1}{2}$(縱坐標不變),得到函數(shù)y=g(x)的圖象,當x∈[-$\frac{π}{12}$,$\frac{π}{3}$]時,求函數(shù)g(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案