14.已知A={x|x<a},B={x|1<x<4},若A⊆∁RB,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,1)B.(-∞,4]C.(-∞,1]D.[1,+∞)

分析 求出CRB,根據(jù)A⊆∁RB,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.

解答 解:A={x|x<a},B={x|1<x<4},
∴CRB={x|x≤1,或x≥4},
∵A⊆CRB,
∴a≤1.
故選C.

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2x+m21-x
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)a,使得函數(shù)f(x)的圖象關(guān)于點(diǎn)A(a,0)對(duì)稱,若存在,求實(shí)數(shù)a的值,若不存在,請(qǐng)說明理由.
注:點(diǎn)M(x1,y1),N(x2,y2)的中點(diǎn)坐標(biāo)為($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三個(gè)數(shù)${log_2}\frac{1}{5}\;,\;{2^{0.1}}\;,\;{2^{-1}}$的大小關(guān)系是( 。
A.${log_2}\frac{1}{5}\;<{2^{0.1}}\;<{2^{-1}}$B.${2^{0.1}}\;<{2^{-1}}<{log_2}\frac{1}{5}$
C.${log_2}\frac{1}{5}\;<{2^{-1}}<{2^{0.1}}$D.${2^{0.1}}\;<{log_2}\frac{1}{5}<{2^{-1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若兩個(gè)等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,且$\frac{S_n}{T_n}=\frac{2n+1}{n+2}(n∈{N^*})$,則$\frac{a_7}{b_7}$等于( 。
A.2B.$\frac{5}{3}$C.$\frac{9}{5}$D.$\frac{31}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|x2-4=0},則下列表示不正確的是( 。
A.2∈AB.-2∉AC.A={-2,2}D.∅⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.計(jì)算:log23•log94=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列判斷正確的是( 。
A.0∉NB.1∈{x|(x-1)(x+2)=0}C.N*∈ZD.0={0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=2cos(ωx+φ)的部分圖象如圖所示,其中ω>0,|φ|<$\frac{π}{2}$,則f($\frac{1}{4}$)的值為(  )
A.-$\sqrt{3}$B.-1C.$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與不過坐標(biāo)原點(diǎn)O的直線l:y=kx+m相交與A、B兩點(diǎn),線段AB的中點(diǎn)為M,若AB、OM的斜率之積為-$\frac{3}{4}$,則橢圓C的離心率為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案