2.某位股民購進某只股票,在接下來的交易時間內(nèi),他的這只股票先經(jīng)歷了5次漲停(每次上漲10%),又經(jīng)歷了5次跌停(每次下跌10%),則該股民這只股票的盈虧情況(不考慮其他費用)為( 。
A.略有盈利B.略有虧損
C.沒有盈利也沒有虧損D.無法判斷盈虧情況

分析 由題意設(shè)股民購進某只股票價值為1個單位,根據(jù)題意列出解析式化簡后比較即可.

解答 解:由題意設(shè)股民購進某只股票價值為1個單位,
則最后為:y=(1+10%)5(1-10%)5=0.995<1.
所以該股民這只股票的盈虧情況是略有虧損.
故選:B.

點評 本題考查指數(shù)型函數(shù)的實際應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|1<x<3},B={x|x>2},則A∪∁RB=(  )
A.{x|x≤2}B.{x|2<x<3}C.{x|x<3}D.{x|1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實數(shù) x∈[1,10],執(zhí)行如圖所示的程序框圖,則輸出的x不大于63的概率為( 。
A.$\frac{3}{10}$B.$\frac{1}{3}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知 a>0,b>0,雙曲線 C1:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,圓C2:x 2+y 2-2ax+$\frac{3}{4}$a2=0,若雙曲線C1的漸近線與圓C2相切,則雙曲線 C1 的離心率是( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x|x2-x≤0,x∈Z},N={x|x=2n,n∈N},則M∩N為( 。
A.{0}B.{1}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=lg(x2+ax-a-1)在區(qū)間[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是(-3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.7名志愿者中有3名女生,從其中安排6人在周六、周日兩天參加社區(qū)公益活動,若每天安排3人,則兩天中恰好各有1名女生的概率為$\frac{9}{35}$(用數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知平面ADC∥平面A1B1C1,B為線段AD的中點,△ABC≈△A1B1C1,四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1,A1C1=A1A,∠C1A1A=$\frac{π}{3}$,M為棱A1C1的中點.
(I)若N為線段DC1上的點,且直線MN∥平面ADB1A1,試確定點N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在復(fù)平面中,復(fù)數(shù)$\frac{1}{(1+i)^{2}+1}$對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案