已知函數(shù)f(x)=-2alnx(a>0)
(I)求函數(shù)f(x)的單調(diào)區(qū)間和最小值.
(II)若方程f(x)=2ax有唯一解,求實數(shù)a的值.

(I)函數(shù)的減區(qū)間為,增區(qū)間為,最小值為
(II)

解析試題分析:解:⑴函數(shù)的定義域為,且
所以當時,,當時,
即函數(shù)的減區(qū)間為,增區(qū)間為,
.
⑵設,
,
因為,令,則,
所以當,當,
即函數(shù)的減區(qū)間為,增區(qū)間為,
又因為當時均有,
所以有唯一解,
注意到,所以 
所以,因為,所以
,則對于恒成立,
為增函數(shù),又,所以,
解之得,為所求.
考點:函數(shù)的零點與方程根的關系;利用導數(shù)研究函數(shù)的單調(diào)性.
點評:本小題主要考查函數(shù)的單調(diào)性、導數(shù)的應用、解不等式等基礎知識,以及推理能力、運算能力和綜合應用數(shù)學知識的能力,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)計算的值,據(jù)此提出一個猜想,并予以證明;
(2)證明:除點(2,2)外,函數(shù)的圖像均在直線的下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當時,求曲線在原點處的切線方程;
(Ⅱ)當時,討論函數(shù)在區(qū)間上的單調(diào)性;
(Ⅲ)證明不等式對任意成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)請寫出函數(shù)在每段區(qū)間上的解析式,并在圖中的直角坐標系中作出函數(shù)的圖象;
(II)若不等式對任意的實數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是定義域為的奇函數(shù),且當時,
,(。
(1)求實數(shù)的值;并求函數(shù)在定義域上的解析式;
(2)求證:函數(shù)上是增函數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知a>0,a≠1,設p:函數(shù)內(nèi)單調(diào)遞減,q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.如果p與q有且只有一個正確,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知.
(1)若a=0時,求函數(shù)在點(1,)處的切線方程;
(2)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(3)令是否存在實數(shù)a,當是自然對數(shù)的底)時,函數(shù) 的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是奇函數(shù),且當時,,求時,的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)表示導函數(shù)。
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)當為奇數(shù)時,設,數(shù)列的前項和為,證明不等式對一切正整數(shù)均成立,并比較的大小.

查看答案和解析>>

同步練習冊答案