設(shè)x、y∈R,向量
a
=(x,1),
b
=(1,y),
c
=(-3,6),且
a
b
,
b
c
,則(
a
+
b
c
=( 。
A、13B、15C、15D、16
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:根據(jù)
a
b
,
b
c
,建立方程關(guān)系,即可求出x,y的值,然后根據(jù)數(shù)量積的坐標(biāo)公式進行計算即可.
解答: 解:∵向量
a
=(x,1),
b
=(1,y),
c
=(-3,6),且
a
b
b
c
,
∴x+y=0且6+3y=0,
即x=2,y=-2,
∴(
a
+
b
c
=(3,-1)•(-3,6)=3×(-3)+(-1)×6=-15.
故選:B.
點評:本題只要考查向量的坐標(biāo)公式,要求熟練掌握向量垂直和向量平行的坐標(biāo)公式的應(yīng)用,以及向量數(shù)量積的坐標(biāo)公式,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,
AB
AC
=|
BC
|=8,M為BC邊的中點,則中線AM的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0,有結(jié)論:
①直線l過定點(3,1);
②不論m取什么實數(shù),直線l與圓C恒交于兩不同點;
③直線被圓C截得的弦長最小值時l的方程為y=2x-5.
以上結(jié)論正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alog2x+blog3x+2,且f(
1
2013
)=4,則f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x=3cosθ+1
y=4sinθ
(θ為參數(shù)),焦點坐標(biāo)為
 
.兩條準(zhǔn)線的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量|
a
|=2,向量|
b
|=4,且
a
b
的夾角為
3
,則
a
b
方向上的投影是( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式(x-2)f′(x)<0的解集為(  )
A、(-∞,
1
3
B、(-∞,
1
3
)∪(2,+∞)
C、(-1,
1
3
)∪(2,+∞)
D、(-∞,-1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
1-cosθ
1+cosθ
+
1+cosθ
1-cosθ
(π<θ<
2
)( 。
A、1
B、-1
C、sinθ
D、-
2
sinθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}前n項的和,則
2Sn+16
an+3
(n∈N+)的最小值為( 。
A、4
B、3
C、2
3
-2
D、
9
2

查看答案和解析>>

同步練習(xí)冊答案