已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn),圓的直徑為的長(zhǎng)軸.如圖,是橢圓短軸端點(diǎn),動(dòng)直線過(guò)點(diǎn)且與圓交于兩點(diǎn),垂直于交橢圓于點(diǎn).
(1)求橢圓的方程;
(2)求 面積的最大值,并求此時(shí)直線的方程.
(1) (2)
解析試題分析:(1)已知橢圓的離心率為即可得到與的關(guān)系式,再結(jié)合橢圓過(guò)點(diǎn),代入橢圓方程組成方程組可求解得到橢圓方程; (2) 要求面積可先求兩個(gè)弦長(zhǎng)度,是一直線與圓相交得到的弦長(zhǎng),可采用圓的弦長(zhǎng)公式,而是橢圓的弦長(zhǎng),使用公式求解,把面積表示成變量的函數(shù), 求其最值時(shí)可用換元法求解.對(duì)當(dāng)斜率為0時(shí)要單獨(dú)討論.
試題解析:(1)由已知得到,所以,即.
又橢圓經(jīng)過(guò)點(diǎn),故,
解得,
所以橢圓的方程是
(2)因?yàn)橹本且都過(guò)點(diǎn)
①當(dāng)斜率存在且不為0時(shí),設(shè)直線,直線,即,
所以圓心到直線的距離為,所以直線被圓所截弦
由得, ,
所以,
,
所以,
令,則,
,
當(dāng),即時(shí),等號(hào)成立,
故面積的最大值為,此時(shí)直線的方程為,
②當(dāng)斜率為0時(shí),即,此時(shí),
當(dāng)的斜率不存在時(shí),不合題意;
綜上, 面積的最大值為,此時(shí)直線的方程為.
考點(diǎn):直線與圓的位置關(guān)系,弦長(zhǎng)公式,換元法求函數(shù)最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓滿足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)的比為3∶1;③圓心到直線l:x-2y=0的距離為,求該圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
AB是圓O的直徑,D為圓O上一點(diǎn),過(guò)D作圓O的切線交AB延長(zhǎng)線于點(diǎn)C,若DA=DC,求證:AB=2BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知?jiǎng)訄A與直線相切且與圓:外切。
(1)求圓心的軌跡方程;
(2)過(guò)定點(diǎn)作直線交軌跡于兩點(diǎn),是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),求證:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C的方程為:x2+y2-2mx-2y+4m-4=0.(m∈R).
(1)試求m的值,使圓C的面積最;
(2)求與滿足(1)中條件的圓C相切,且過(guò)點(diǎn)(1,-2)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:x2+y2+x-6y+m=0與直線l:x+2y-3=0.
(1)若直線l與圓C沒(méi)有公共點(diǎn),求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知圓:和圓:
(1)若直線l過(guò)點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線l的方程;
(2)設(shè)P為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線和,它們分別與圓和圓相交,且直線被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C經(jīng)過(guò)A(1,1)、B(2,)兩點(diǎn),且圓心C在直線l:x-y+1=0上,求圓C的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過(guò)點(diǎn)的直線與圓C交于不同的兩點(diǎn)且為時(shí)
求:的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com