2.某班級的54名學(xué)生編號為:1,2,3,…,54,為了采集同學(xué)們的身高信息,先采用系統(tǒng)抽樣的方法抽取一個(gè)容量為6的樣本,已知樣本中含有編號為5號、23號和41號的學(xué)生,則樣本中剩余三名同學(xué)的編號分別為14,32,50.

分析 根據(jù)系統(tǒng)抽樣的定義,求出樣本間距為9,即可得到結(jié)論.

解答 解:根據(jù)系統(tǒng)抽樣的定義抽樣間距為9,
則6個(gè)樣本編號從小到大構(gòu)成以9為公差的等差數(shù)列,
則樣本中剩余三名同學(xué)的編號分別為14,32,50,
故答案為:14,32,50

點(diǎn)評 本題主要考查系統(tǒng)抽樣的應(yīng)用,求出樣本間距是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的離心率是3,則其漸近線的方程為(  )
A.$x±2\sqrt{2}y=0$B.$2\sqrt{2}x±y=0$C.x±8y=0D.8x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知θ∈[0,π),若對任意的x∈[-1,0].不等式x2cosθ+(x+1)2sinθ+x2+x>0恒成立,則實(shí)數(shù)θ的取值范圍是( 。
A.($\frac{π}{12}$,$\frac{5π}{12}$)B.($\frac{π}{6}$,$\frac{π}{4}$)C.($\frac{π}{4}$,$\frac{3π}{4}$)D.($\frac{π}{6}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如果函數(shù)y=f(x)的定義域?yàn)镽,且存在實(shí)常數(shù)a,使得對于定義域內(nèi)任意x,都有f(x+a)=f(-x)成立,則稱此函數(shù)f(x)具有“P(a)性質(zhì)”.
(1)判斷函數(shù)y=cosx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”,求出所有a的值的集合;若不具有“P(a)性質(zhì)”,請說明理由;
(2)已知函數(shù)y=f(x)具有“P(0)性質(zhì)”,且當(dāng)x≤0時(shí),f(x)=(x+m)2,求函數(shù)y=f(x)在區(qū)間[0,1]上的值域;
(3)已知函數(shù)y=g(x)既具有“P(0)性質(zhì)”,又具有“P(2)性質(zhì)”,且當(dāng)-1≤x≤1時(shí),g(x)=|x|,若函數(shù)y=g(x)的圖象與直線y=px有2017個(gè)公共點(diǎn),求實(shí)數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=|x-b|+|x+b|.
(1)當(dāng)b=1時(shí),求f(x)≤x+2的解集;
(2)當(dāng)x=1時(shí),若不等式f(x)≥$\frac{|a+1|-|2a-1|}{|a|}$對任意實(shí)數(shù)a≠0恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)$f(x)=\frac{{{e^x}-1}}{x}$,
(1)求f(x)在x=1處的切線方程;
(2)證明:對任意a>0,當(dāng)0<|x|<ln(1+a)時(shí),|f(x)-1|<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)A,B的坐標(biāo)分別為(-$\sqrt{2}$,0),($\sqrt{2}$,0),直線AM,BM相交于點(diǎn)M,且它們的斜率之積是-$\frac{1}{2}$,點(diǎn)M的軌跡為曲線E.
(Ⅰ)求E的方程;
(Ⅱ)過點(diǎn)F(1,0)作直線l交曲線E于P,Q兩點(diǎn),交y軸于R點(diǎn),若$\overrightarrow{RP}$=λ1$\overrightarrow{PF}$,$\overrightarrow{RQ}$=λ2$\overrightarrow{QF}$,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.2017年是某市大力推進(jìn)居民生活垃圾分類的關(guān)鍵一年,有關(guān)部門為宣傳垃圾分類知識,面向該市市民進(jìn)行了一次“垃圾分類知識”的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖所示:

(1)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布N(μ,210),μ近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P(50.5<Z<94).
(2)在(1)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
①得分不低于μ可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于μ則只有1次;
②每次贈(zèng)送的隨機(jī)話費(fèi)和對應(yīng)概率如下:
贈(zèng)送話費(fèi)(單位:元)1020
概率$\frac{2}{3}$ $\frac{1}{3}$ 
現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求X的分布列.
附:$\sqrt{210}$≈14.5
若Z~N(μ,δ2),則P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)全集U=R,集合A={y|y=x2-2},B={x|y=log2(3-x),則(∁UA)∩B=( 。
A.{x|-2≤x<3}B.{x|x≤-2}C.{x|x<-2}D.{x|x<3}

查看答案和解析>>

同步練習(xí)冊答案