(本小題滿(mǎn)分13分)直線與橢圓交于,兩點(diǎn),已知,,若且橢圓的離心率,又橢圓經(jīng)過(guò)點(diǎn),為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線過(guò)橢圓的焦點(diǎn),(為半焦距),求直線的斜率的值;

(Ⅲ)試問(wèn):的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

 

【答案】

(Ⅰ)橢圓的方程為 (Ⅱ)(Ⅲ)三形的面積為定值

【解析】(Ⅰ)∵   …………………2分

    ∴橢圓的方程為   ………………3分

(Ⅱ)依題意,設(shè)的方程為

 由

 顯然

   …………………5分

 由已知得:

           …6分

                   ……………7分

  解得   ……………………8分

(Ⅲ)(1)當(dāng)直線斜率不存在時(shí),即,由

               得

            又在橢圓上, 所以

               ………………9分

         所以三角形的面積為定值.

    (2)當(dāng)直線斜率存在時(shí):設(shè)的方程為

          

        必須 即

        得到  …………………10分

         ∵,∴

        代入整理得:   ……………………11分

    …………………12分

    …………………13分

 所以三形的面積為定值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿(mǎn)分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案