A. | |PF1|+|PF2|>10 | B. | |PF1|+|PF2|<10 | C. | |PF1|+|PF2|≥10 | D. | |PF1|+|PF2|≤10 |
分析 由橢圓的方程畫出:特征折線$\frac{|x|}{a}$+$\frac{|y|}$=1(a>b>0)的圖形,由圖可知P必然在橢圓內(nèi)或橢圓上,則由橢圓的定義可知|PF1|+|PF2|≤10.
解答 解:作出橢圓與其特征折線的圖象,如圖所示:
由圖可知點(diǎn)P在$\frac{|x|}{a}$+$\frac{|y|}$=1(a>b>0)上,
∴P必然在橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)內(nèi)或上,
即當(dāng)P為橢圓的頂點(diǎn)時(shí),|PF1|+|PF2|=10,
∴|PF1|+|PF2|≤10,
故選D.
點(diǎn)評(píng) 本題考查橢圓的定義,考查含絕對(duì)值的直線方程的圖象,考查數(shù)形結(jié)合思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在$(0,\frac{π}{2})$單調(diào)遞減 | B. | f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞減 | ||
C. | f(x)在$(0,\frac{π}{2})$單調(diào)遞增 | D. | f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4項(xiàng) | B. | 5項(xiàng) | C. | 6項(xiàng) | D. | 7項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y+1=0 | B. | x+y-1=0 | C. | x-y+1=0 | D. | x-y-1=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com