【題目】圍建一個面積為360的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻的長度為(單位:),修建此矩形場地圍墻的總費用為(單位:元)
(1)將表示為的函數(shù);
(2)試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
【答案】(1)y=225x+
(2)當(dāng)x=24m時,修建圍墻的總費用最小是10440元
【解析】
試題分析:(1)設(shè)矩形的另一邊長為am,則根據(jù)圍建的矩形場地的面積為360m2,易得,此時再根據(jù)舊墻的維修費用為45元/m,新墻的造價為180元/m,我們即可得到修建圍墻的總費用y表示成x的函數(shù)的解析式;(2)根據(jù)(1)中所得函數(shù)的解析式,利用基本不等式,我們易求出修建此矩形場地圍墻的總費用最小值,及相應(yīng)的x值
試題解析:(1)如圖,設(shè)矩形的另一邊長為a m
則45x+180(x-2)+180·2a=225x+360a-360
由已知xa=360,得a=,
所以y=225x+
(2)
.當(dāng)且僅當(dāng)225x=時,等號成立.
即當(dāng)x=24m時,修建圍墻的總費用最小,最小總費用是10440元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的增區(qū)間;
(2)寫出函數(shù)f(x)的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時,討論的單調(diào)性;
(2)當(dāng)時,求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教室內(nèi)有一直尺,無論怎樣放置,在地面總有這樣的直線,使得它與直尺所在直線 ( )
A. 平行 B. 垂直 C. 相交 D. 異面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以一個等邊三角形的底邊所在的直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周所得的幾何體是
A. 一個圓柱 B. 一個圓錐 C. 一個圓臺 D. 兩個圓錐
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是
A. 四邊形確定一個平面
B. 經(jīng)過一條直線和一個點確定一個平面
C. 經(jīng)過三點確定一個平面
D. 兩兩相交且不共點的三條直線確定一個平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】20名同學(xué)參加某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:
(Ⅰ)求頻率分布直方圖中的值;
(Ⅱ)分別求出成績落在,中的學(xué)生人數(shù);
(Ⅲ)從成績在的學(xué)生中任選2人,求此2人的成績都在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到曲線.
(1)寫出的參數(shù)方程;
(2)設(shè)直線與的交點為,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,求:過線段的中點且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓x2+y2-4x+6y=0和圓x2+y2-6x=0交于A,B兩點,則直線AB的方程是( )
A. x+y+3=0 B. 3x-y-9=0
C. x+3y=0 D. 4x-3y+7=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com