7.已知命題p:x2-8x-20≤0,q:1-a≤x≤1+a,若p是q的必要不充分條件,求a的取值范圍.

分析 解不等式求出p的范圍,結(jié)合p是q的必要不充分條件以及集合的包含關(guān)系,得到關(guān)于a的不等式組,解出即可.

解答 解:p:-2≤x≤10,令A(yù)=[-2,10];…(2分)
q:1-a≤x≤1+a,令B=[1-a,1+a]
∵p是q的必要不充分條件,
∴B?A,A?B,…(4分)
∴$\left\{\begin{array}{l}{a≥0}\\{1-a≥-2}\\{1+a≤10}\end{array}\right.$ 或a<0,
解得:0≤a≤3或a<0,
故a≤3…(10分)

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是非零向量,
命題p:若 $\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{0}$,$\overrightarrow$•$\overrightarrow{c}$=$\overrightarrow{0}$,則$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{0}$
命題q:若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$ 則$\overrightarrow{a}$∥$\overrightarrow{c}$,則下列命題是假命題的是(  )
A.p∨qB.p∧qC.(¬p)∨(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若角α的終邊經(jīng)過(guò)點(diǎn)P(1,$\sqrt{3}$),則cosα+tanα的值為( 。
A.$\frac{{1+2\sqrt{3}}}{2}$B.$\frac{{-1+\sqrt{3}}}{2}$C.$\frac{{1+\sqrt{3}}}{2}$D.$\frac{{-1+2\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.命題“?x>0,2x>1”的否定?x0>0,${2}^{{x}_{0}}≤1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左頂點(diǎn)A(-2,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線(xiàn)l:x=my+t(t≠-a)與橢圓C交于不同兩點(diǎn)B,C,且滿(mǎn)足AB⊥AC.求證:直線(xiàn)l過(guò)定點(diǎn),并求出定點(diǎn)M的坐標(biāo);
(Ⅲ)在(Ⅱ)的條件下,過(guò)A作AD⊥l,垂足為D,求D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知2是集合{0,a,a2-3a+2}中的元素,則實(shí)數(shù)a為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知等比數(shù)列{an}和等差數(shù)列{bn}均是首項(xiàng)為2,各項(xiàng)為正數(shù)的數(shù)列,且b2=4a2,a2b3=6.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)求使a${\;}_{_{n}}$<0.001成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.對(duì)于正整數(shù)k,記g(k)表示k的最大奇數(shù)因數(shù),例如g(1)=1,g(2)=1,g(10)=5.設(shè)Sn=g(1)+g(2)+g(3)+…+g(2n).給出下列四個(gè)結(jié)論:
①g(3)+g(4)=10;
②?m∈N*,都有g(shù)(2m)=g(m);
③S1+S2+S3=30;
④Sn-Sn-1=4n-1,n≥2,n∈N*
則其中所有正確結(jié)論的序號(hào)為( 。
A.①②③B.②③④C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知命題p:?x∈(0,+∞),sinx<x,則( 。
A.¬p:?x∈(0,+∞),sinx≥xB.¬p:?x0∈(0,+∞),sinx0≥x0
C.¬p:?x∈(-∞,0],sinx≥xD.¬p:?x0∈(-∞,0],sinx0≥x0

查看答案和解析>>

同步練習(xí)冊(cè)答案