【題目】設(shè)全集為R,.

1)求

2)若,求實(shí)數(shù)a的取值范圍.

【答案】1AB{x|3x5},RAB)={x|x3x5},

2(﹣∞,][6,+∞)

【解析】

1)由A{x|2x5},B{x|3x8},能求出ABRAB).

2)由AB{x|3x5},(AB)∩C,當(dāng)C時(shí),a12a,當(dāng)C時(shí),,由此能求出實(shí)數(shù)a的取值范圍.

1)因?yàn)?/span>A{x|2x5}B{x|3x8},

所以AB{x|3x5},

RAB)={x|x3x5}

2)因?yàn)?/span>AB{x|3x5},(AB)∩C,

當(dāng)C時(shí),a12a,解得a≤﹣1;

當(dāng)C時(shí),,

解得﹣1aa6

綜上,實(shí)數(shù)a的取值范圍是(﹣∞,][6,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某種水箱用的“浮球”,是由兩個(gè)半球和一個(gè)圓柱筒組成.已知半球的直徑是6 cm,圓柱筒高為2 cm.

1這種“浮球”的體積是多少cm3結(jié)果精確到0.1?

2要在2 500個(gè)這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,上一點(diǎn),且.

(1)求的方程;

(2)設(shè)點(diǎn)上異于點(diǎn)的一點(diǎn),直線與直線交于點(diǎn),過點(diǎn)軸的垂線交于點(diǎn),證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級(jí)開設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)冰球是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計(jì)

55

合計(jì)

(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對(duì)冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對(duì)冰球有興趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓ab0)的離心率,過點(diǎn)A0,-b)和Ba,0)的直線與原點(diǎn)的距離為

1)求橢圓的方程.

2)已知定點(diǎn)E-1,0),若直線ykx2k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(α)=.

(1)化簡(jiǎn)f(α);

(2)若f(α)=,且<α<,求cosα-sinα的值;

(3)若α=-,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象過點(diǎn)

1)求的解析式;

2)求函數(shù)的單調(diào)遞增區(qū)間;

3)將函數(shù)的圖象向右平移個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若關(guān)于的方程,在區(qū)間上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)令,判斷g(x)的單調(diào)性;

(2)當(dāng)x>1時(shí),,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會(huì)中, 為了提高安保的級(jí)別同時(shí)又為了方便接待,現(xiàn)將其中的五個(gè)參會(huì)國(guó)的人員安排酒店住宿,這五個(gè)參會(huì)國(guó)要在、三家酒店選擇一家,且每家酒店至少有一個(gè)參會(huì)國(guó)入住,則這樣的安排方法共有

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案