【題目】“中國人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復(fù)引用,出現(xiàn)這樣的統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天40名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段: , , , , , 后得到如圖所示的頻率分布直方圖.問:
(1)估計在40名讀書者中年齡分布在的人數(shù);
(2)求40名讀書者年齡的平均數(shù)和中位數(shù);
(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列及數(shù)學(xué)期望.
【答案】(1)30;(2)54,55;(3) 的分布列如下:
0 | 1 | 2 | |
數(shù)學(xué)期望
【解析】試題分析:(1)由頻率分布直方圖知年齡在[40,70)的頻率為(0.020+0.030+0.025)×10,進(jìn)而得出40名讀書者中年齡分布在[40,70)的人數(shù).(2)40名讀書者年齡的平均數(shù)為25×0.05+35×0.1+45×0.2+55×0.3+65×0.25+75×0.1.計算頻率為處所對應(yīng)的數(shù)據(jù)即可得出中位數(shù).(3)年齡在[20,30)的讀書者有2人,年齡在[30,40)的讀書者有4人,所以X的所有可能取值是0,1,2.利用超幾何分布列計算公式即可得出.
試題解析:
(1)由頻率分布直方圖知年齡在的頻率為,
所以40名讀書者中年齡分布在的人數(shù)為.
(2)40名讀書者年齡的平均數(shù)為
.
設(shè)中位數(shù)為,則
解得,即40名讀書者年齡的中位數(shù)為55.
(3)年齡在的讀書者有人,
年齡在的讀書者有人,
所以的所有可能取值是0,1,2,
,
,
,
的分布列如下:
0 | 1 | 2 | |
數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856334)
已知函數(shù)f(x)=ln x+ax2+1.
(Ⅰ)當(dāng)a=-1時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時,證明:存在正實(shí)數(shù)λ,使得λ恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示.過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為,過點(diǎn)且斜率為的直線與軸交于點(diǎn),與橢圓交于另一個點(diǎn),且點(diǎn)在軸上的射影恰好為點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線與橢圓交于兩點(diǎn)(不與重合),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時, .給出以下命題:
①當(dāng)x<0時,f(x)=ex(x+1);
②函數(shù)f(x)有五個零點(diǎn);
③若關(guān)于x的方程f(x)=m有解,則實(shí)數(shù)m的取值范圍是f(-2)≤m≤f(2);
④對x1,x2∈R,|f(x2)-f(x1)|<2恒成立.
其中,正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中, 平面, , .過的平面交于點(diǎn),交于點(diǎn).
(l)求證: 平面;
(Ⅱ)求證:四邊形為平行四邊形;
(Ⅲ)若是,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com