已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0.
(1)當(dāng)m為何值時(shí),方程C表示圓.
(2)若圓C與直線l:x+2y-4=0相交于M,N兩點(diǎn),且MN=數(shù)學(xué)公式,求m的值.

解:(1)方程C可化為:(x-1)2+(y-2)2=5-m,顯然,當(dāng)5-m>0時(shí),即m<5時(shí),方程C表示圓.
(2)圓的方程化為(x-1)2+(y-2)2=5-m,圓心C(1,2),半徑,
則圓心C(1,2)到直線l:x+2y-4=0 的距離為
,有
,解得 m=4.
分析:(1)方程C可化為:(x-1)2+(y-2)2=5-m,應(yīng)有5-m>0.
(2)先求出圓心坐標(biāo)和半徑,圓心到直線的距離,利用弦長(zhǎng)公式求出m的值.
點(diǎn)評(píng):本題考查圓的標(biāo)準(zhǔn)方程的特征,點(diǎn)到直線的距離公式、弦長(zhǎng)公式的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0.
(1)當(dāng)m為何值時(shí),方程C表示圓.
(2)若圓C與直線l:x+2y-4=0相交于M,N兩點(diǎn),且MN=
4
5
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0.
(1)若方程C表示圓,求m的取值范圍;
(2)若圓C與圓x2+y2-8x-12y+36=0外切,求m的值;
(3)若圓C與直線l:x+2y-4=0相交于M,N兩點(diǎn),且|MN|=
4
5
5
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0.
(1)當(dāng)m為何值時(shí),方程C表示圓.
(2)若圓C與直線l:x+2y-4=0相交于M,N兩點(diǎn),且|MN|=
4
5
,求m的值.
(3)在(2)條件下,是否存在直線l:x-2y+c=0,使得圓上有四點(diǎn)到直線l的距離為
1
5
,若存在,求出c的范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x,y的方程x2+y2-2x-4y+m=0
(Ⅰ)當(dāng)m為何值時(shí),此方程表示圓;
(Ⅱ)在(Ⅰ)的條件下,若從點(diǎn)P(3,1)射出的光線,經(jīng)x軸于點(diǎn)Q(
35
,0)處反射后,與圓相切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0.
(1)當(dāng)m為何值時(shí),方程C表示圓.
(2)若圓C與直線l:x+2y-4=0相交于M,N兩點(diǎn),且|MN|=
4
5
5
,求m的值.
(3)在(2)條件下,是否存在直線l:x-2y+c=0,使得圓上有四點(diǎn)到直線l的距離為
5
5
,若存在,求出c的范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案