【題目】如圖,A、B、C、D為平面四邊形ABCD的四個(gè)內(nèi)角.

(1)證明:tan ;
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.

【答案】
(1)證明: tan = = = .等式成立.
(2)解:由A+C=180°,得C=180°﹣A,D=180°﹣B,由(Ⅰ)可知:tan +tan +tan +tan = = ,連結(jié)BD,在△ABD中,有BD2=AB2+AD2﹣2ABADcosA,AB=6,BC=3,CD=4,AD=5,

在△BCD中,有BD2=BC2+CD2﹣2BCCDcosC,

所以AB2+AD2﹣2ABADcosA=BC2+CD2﹣2BCCDcosC,

則:cosA= = =

于是sinA= = ,

連結(jié)AC,同理可得:cosB= = = ,

于是sinB= =

所以tan +tan +tan +tan = = =


【解析】(1)直接利用切化弦以及二倍角公式化簡(jiǎn)證明即可.(2)通過(guò)A+C=180°,得C=180°﹣A,D=180°﹣B,利用(1)化簡(jiǎn)tan +tan +tan +tan = ,連結(jié)BD,在△ABD中,利用余弦定理求出sinA,連結(jié)AC,求出sinB,然后求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(x1,y1),B(x2,y2),M(1,0),=(3λ,4λ)(λ≠0),=-4,若拋物線y2=ax經(jīng)過(guò)AB兩點(diǎn),a的值為(  )

A. 2 B. -2

C. -4 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)M、N、T是圓C:(x﹣1)2+y2=4上不同三點(diǎn),若存在正實(shí)數(shù)a,b,使 =a +b ,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+lnx.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)求證:當(dāng)x>1時(shí), x2+lnx<x3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的通項(xiàng)an=n2(cos2 ﹣sin2 ),其前n項(xiàng)和為Sn , 則S30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f (x)=(x+1)lnx﹣a (x﹣1)在x=e處的切線與y軸相交于點(diǎn)(0,2﹣e).
(1)求a的值;
(2)函數(shù)f (x)能否在x=1處取得極值?若能取得,求此極值;若不能,請(qǐng)說(shuō)明理由.
(3)當(dāng)1<x<2時(shí),試比較 大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P(3,0)在圓C:(x﹣m)2+(y﹣2)2=40內(nèi),動(dòng)直線AB過(guò)點(diǎn)P且交圓C于A、B兩點(diǎn),若△ABC的面積的最大值為20,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=|x﹣1|﹣2|x+1|的最大值為m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量=(1,-3,2),=(-2,1,1),點(diǎn)A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直線AB上,是否存在一點(diǎn)E,使得?(O為原點(diǎn))

查看答案和解析>>

同步練習(xí)冊(cè)答案