在等差數(shù)列{an}中,a1=2,d=1,{bn}是以1為首項(xiàng),2為公比的等比數(shù)列,則ab1+ab2+…+ab10=
 
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:由已知得an=2+(n-1)×1=n+1,bn=2n-1,從而ab1+ab2+…+ab10=20+2+22+…+29+10,由此能求出結(jié)果.
解答: 解:在等差數(shù)列{an}中,
∵a1=2,d=1,∴an=2+(n-1)×1=n+1,
∵{bn}是以1為首項(xiàng),2為公比的等比數(shù)列,
∴bn=2n-1,
∴ab1+ab2+…+ab10=20+2+22+…+29+10
=
1-210
1-2
+10
=1033.
故答案為:1033.
點(diǎn)評(píng):本題考查數(shù)列的前10項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列和等比數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
1b
c2
有特征值λ1=4及對(duì)應(yīng)的一個(gè)特征向量
e1
=
2
3

(1)求矩陣M;
(2)寫出矩陣M的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=(x-a)2lnx,a∈R.
(1)x=e是y=f(x)極值點(diǎn),求a.
(2)求a范圍使得對(duì)任意x∈(0,3e]恒有f(x)≤4e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,兩定點(diǎn)A(-6,0),B(2,0),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P對(duì)線段AO,BO所張的角相等(即∠APO=∠BPO),求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
AB
,
AC
,
BC
滿足|
AB
|=|
AC
|+|
BC
|,則(  )
A、
AB
=
AC
+
BC
B、
AB
=-
AC
-
BC
C、
AC
BC
同向
D、
AC
CB
同向

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過點(diǎn)A(2,0),B(5,2),并且被直線l:x-y=0平分.
(1)求圓的方程;
(2)若點(diǎn)P到圓C的任意一點(diǎn)的最小距離和點(diǎn)P到x軸的距離相等,求動(dòng)點(diǎn)P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(lnx+1)(x>0).
(Ⅰ)令F(x)=-
1
2
x2+f
(x),討論函數(shù)F(x)的單調(diào)性;
(Ⅱ)若直線l與曲線y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)兩點(diǎn).求證:x1
x1-x2
f(x1)-f(x2)
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的圖象與y=x+
1
x
的圖象關(guān)于x=1軸對(duì)稱,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程sin2x=sin3x的解集是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案