12.在如圖所示的程序框圖中,若輸出i的值是3,則輸入x的取值范圍是(4,10]

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量i的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:設(shè)輸入x=a,
第一次執(zhí)行循環(huán)體后,x=3a-2,i=1,不滿足退出循環(huán)的條件;
第二次執(zhí)行循環(huán)體后,x=9a-8,i=2,不滿足退出循環(huán)的條件;
第三次執(zhí)行循環(huán)體后,x=27a-26,i=3,滿足退出循環(huán)的條件;
故9a-8≤82,且27a-26>82,
解得:a∈(4,10],
故答案為:(4,10].

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.小型風(fēng)力發(fā)電項(xiàng)目投資較少,開(kāi)發(fā)前景廣闊.受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測(cè)算,IEC(國(guó)際電工委員會(huì))風(fēng)能風(fēng)區(qū)分類標(biāo)準(zhǔn)如表:
風(fēng)能分類一類風(fēng)區(qū)二類風(fēng)區(qū)
平均風(fēng)速m/s8.5--106.5--8.5
某公司計(jì)劃用不超過(guò)100萬(wàn)元的資金投資于A、B兩個(gè)小型風(fēng)能發(fā)電項(xiàng)目.調(diào)研結(jié)果是,未來(lái)一年內(nèi),位于一類風(fēng)區(qū)的A項(xiàng)目獲利40%的可能性為0.6,虧損20%的可能性為0.4;
B項(xiàng)目位于二類風(fēng)區(qū),獲利35%的可能性為0.6,虧損10%的可能性是0.2,不賠不賺的可能性是0.2.
假設(shè)投資A項(xiàng)目的資金為x(x≥0)萬(wàn)元,投資B項(xiàng)目資金為y(y≥0)萬(wàn)元,且公司要求對(duì)A項(xiàng)目的投資不得低于B項(xiàng)目.(1)請(qǐng)根據(jù)公司投資限制條件,寫(xiě)出x,y滿足的條件,并將它們表示在平面xOy內(nèi);
(2)記投資A,B項(xiàng)目的利潤(rùn)分別為ξ和η,試寫(xiě)出隨機(jī)變量ξ與η的分布列和期望Eξ,Eη;
(3)根據(jù)(1)的條件和市場(chǎng)調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利潤(rùn)之和z=Eξ+Eη的最大值,并據(jù)此給出公司分配投資金額建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在一個(gè)口袋里裝有4個(gè)紅球,6個(gè)白球,每次從口袋中任意取出一球,記下顏色后再放回口袋內(nèi),這樣連續(xù)取了4次,恰有2次是紅球的概率是( 。
A.0.3456B.0.3546C.0.375 6D.0.457 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知某正三棱錐的三視圖如圖所示,則該正三棱錐的側(cè)視圖的面積為( 。
A.$9\sqrt{2}$B.9C.3$\sqrt{3}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{A}{2}-\frac{A}{2}$cos2(ωx+φ),(A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象過(guò)點(diǎn)(1,2),相鄰兩條對(duì)稱軸間的距離為2,且f(x)的最大值為2.
(1)求φ;
(2)計(jì)算f(1)+f(2)+…+f(2016);
(3)若函數(shù)g(x)=f(x)-m-1在區(qū)間[1,4]上恰有一個(gè)零點(diǎn),求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在極坐標(biāo)系中,直線l的方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,則點(diǎn)A(2,-$\frac{π}{4}$)到直線l的距離為(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2-$\frac{\sqrt{2}}{2}$D.2+$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若橢圓兩個(gè)焦點(diǎn)為F1(-4,0),F(xiàn)2(4,0),橢圓的弦的AB過(guò)點(diǎn)F1,且△ABF2的周長(zhǎng)為20,那么該橢圓的方程為$\frac{x^2}{25}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.定義在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)y=6cosx的圖象與y=9tanx的圖象的交點(diǎn)為P,過(guò)點(diǎn)P作PP1⊥x軸于點(diǎn)P1,直線PP1與y=sinx的圖象交于點(diǎn)P2,則線段P1P2的長(zhǎng)為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=lnx+ax2,其中a為實(shí)常數(shù).
(1)討論函數(shù)f(x)的極值點(diǎn)個(gè)數(shù);
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案