精英家教網 > 高中數學 > 題目詳情
(2013•湖南模擬)設圓C:(x-3)2+(y-5)2=5,過圓心C作直線l交圓于A,B兩點,與y軸交于點P,若A恰好為線段BP的中點,則直線l的方程為
y=2x-1或y=-2x+11
y=2x-1或y=-2x+11
分析:由題意可設直線L的方程為y-5=k(x-3),P(0,5-3k),設A(x1,y1),B(x2,y2),聯立
y-5=k(x-3)
(x-3)2+(y-5)2=5
,然后由方程的根與系數關系可得,x1+x2,x1x2,由A為PB的中點可得x2=2x1,聯立可求x1,x2,進而可求k,即可求解直線方程
解答:解:由題意可得,C(3,5),直線L的斜率存在
可設直線L的方程為y-5=k(x-3)
令x=0可得y=5-3k即P(0,5-3k),設A(x1,y1),B(x2,y2
聯立
y-5=k(x-3)
(x-3)2+(y-5)2=5
消去y可得(1+k2)x2-6(1+k2)x+9k2+4=0
由方程的根與系數關系可得,x1+x2=6,x1x2=
9k2+4
1+k2

∵A為PB的中點
0+x2
2
=x1
即x2=2x1
把②代入①可得x2=4,x1=2,x1x2=
9k2+4
1+k2
=8
∴k=±2
∴直線l的方程為y-5=±2(x-3)即y=2x-1或y=-2x+11
故答案為:y=2x-1或y=-2x+11
點評:本題主要考查直線和圓的位置關系,方程的根與系數關系的應用,體現了方程的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•湖南模擬)設橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右焦點分別為F1、F2,上頂點為A,離心率為
1
2
,在x軸負半軸上有一點B,且
BF2
=2
BF1

(1)若過A、B、F2三點的圓恰好與直線x-
3
y-3=0
相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湖南模擬)大學生自主創(chuàng)業(yè)已成為當代潮流.長江學院大三學生夏某今年一月初向銀行貸款兩萬元作開店資金,全部用作批發(fā)某種商品,銀行貸款的年利率為6%,約定一年    后一次還清貸款,已知夏某每月月底獲得的利潤是該月月初投人資金的15%,每月月底需要    交納個人所得稅為該月所獲利潤的20%,當月房租等其他開支1500元,余款作為資金全    部投入批發(fā)該商品再經營,如此繼續(xù),假定每月月底該商品能全部賣出.
(1)設夏某第n個月月底余an元,第n+l個月月底余an+1元,寫出a1的值并建立an+1與an的遞推關系;
(2)預計年底夏某還清銀行貸款后的純收入.
(參考數據:1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10-11,0.1212≈8.92×10-12

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湖南模擬)如圖所示,已知△ABC內接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2

(1)證明:平面ACD⊥平面ADE,
(2)令AC=x,V(x) 表示三棱錐A-CBE的體積,當V(x) 取得最大值時,求直線AD與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湖南模擬)已知三棱錐的底面是邊長為1的正三角形,其正視圖與俯視圖如圖所示,則其側視圖的面積為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湖南模擬)已知集合M={x∈Z|-1≤x≤1},N={x∈Z|x(x-2)≤0},則如圖所示韋恩圖中的陰影部分所表示的集合為( 。

查看答案和解析>>

同步練習冊答案