【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.

(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;
(2)當(dāng)AE為何值時(shí),綠地面積y最大?

【答案】
(1)解:依題意, ,

,

,

由題意 ,解得:0<x≤2,

∴y=﹣2x2+(a+2)x,其中0<x≤2


(2)解:∵y=﹣2x2+(a+2)x的圖象為拋物線,其開口向下、對稱軸是 ,

∴y=﹣2x2+(a+2)x在上 遞增,在 上遞減,

,即a<6,則 時(shí),y取最大值

,即a≥6,則y=﹣2x2+(a+2)x,0<x≤2是增函數(shù),

故當(dāng)x=2時(shí),y取最大值2a﹣4;

綜上所述:若a<6,則 時(shí)綠地面積取最大值 ;

若a≥6,則AE=2時(shí)綠地面積取最大值2a﹣4.


【解析】(1)根據(jù)題意不難得出,,不難得出y關(guān)于x的解析式,再根據(jù)各邊長大于0,得出x的定義域,(2)根據(jù)(1)中的解析式,由二次函數(shù)求最值的方法可得到AE=2時(shí),綠地面積y最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,DC⊥平面BCEF,且四邊形ABCD為矩形,四邊形BCEF為直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.

(1)求證:AF∥平面CDE;
(2)求平面AEF與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|+5x.
(1)當(dāng)a=﹣1時(shí),求不等式f(x)≤5x+3的解集;
(2)若x≥﹣1時(shí)有f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(x2﹣2mx+m+2),若該函數(shù)的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次方程x2+2mx+2m+1=0.
(Ⅰ)若方程有兩根,其中一根在區(qū)間(﹣1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m 的取值范圍.
(Ⅱ)若方程兩根均在區(qū)間(0,1)內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù):①f(x)=3|x| , ②f(x)=x3 , ③f(x)=ln ,④f(x)=x ,⑤f(x)=﹣x2+1中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減函數(shù)為 . (寫出符合要求的所有函數(shù)的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2﹣3x+3)ex的定義域?yàn)閇﹣2,t],設(shè)f(﹣2)=m,f(t)=n.
(1)試確定t的取值范圍,使得函數(shù)f(x)在[﹣2,t]上為單調(diào)函數(shù);
(2)求證:m<n;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣1+a,g(x)=bf(1﹣x),其中a,b∈R,若關(guān)于x的不等式f(x)≥g(x)的解的最小值為2,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},則B∪(UA)=( )
A.{5}
B.{1,2,5}
C.{1,2,3,4,5}
D.

查看答案和解析>>

同步練習(xí)冊答案