8.設(shè)全集U=R,集合A={x|x2-3x>0},則∁UA=( 。
A.[0,3]B.(0,3)C.(-∞,0)∪(3,+∞)D.(-∞,0]∪[3,+∞)

分析 由二次不等式的解法,可得集合A,再由補(bǔ)集的定義,計(jì)算即可得到所求.

解答 解:全集U=R,集合A={x|x2-3x>0}={x|x(x-3)>0}={x|x>3或x<0},
則∁UA={x|0≤x≤3}=[0,3].
故選:A.

點(diǎn)評(píng) 本題考查集合的補(bǔ)集運(yùn)算,同時(shí)考查二次不等式的解法,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=4+3cost}\\{y=5+3sint}\end{array}}\right.$(其中t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ
(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(2)若A、B分別為曲線C1,C2上的動(dòng)點(diǎn),求當(dāng)|AB|取最小值時(shí)△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知△ABC外接圓半徑是2,$BC=2\sqrt{3}$,則△ABC的面積最大值為$3\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=sin2x+2$\sqrt{3}$cos2x-$\sqrt{3}$,函數(shù)g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),若存在x1,x2∈[0,$\frac{π}{4}$],使得f(x1)=g(x2)成立,則實(shí)數(shù)m的取值范圍是(  )
A.(0,1]B.[1,2]C.[$\frac{2}{3}$,2]D.[$\frac{2}{3}$,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a2=3b2+3c2-2$\sqrt{3}$bcsinA,則C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB,該四棱錐被一平面截去一部分后,剩余部分的三視圖如圖,則剩余部分體積與原四棱錐體積的比值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在x軸的正半軸上,過點(diǎn)F的直線l與拋物線C相交于A、B兩點(diǎn),且滿足$\overrightarrow{OA}•\overrightarrow{OB}=-\frac{3}{4}$.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M在拋物線C的準(zhǔn)線上運(yùn)動(dòng),其縱坐標(biāo)的取值范圍是[-1,1],且$\overrightarrow{MA}•\overrightarrow{MB}=9$,點(diǎn)N是以線段AB為直徑的圓與拋物線C的準(zhǔn)線的一個(gè)公共點(diǎn),求點(diǎn)N的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)離心率為$\frac{\sqrt{2}}{2}$,左、右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,|AF1|=$\sqrt{2}$-1
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若直線l經(jīng)過F2與橢圓交于M,N兩點(diǎn),求$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_1}N}$取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個(gè)焦點(diǎn)為F(3,0),其左頂點(diǎn)A在圓O:x2+y2=12上.
(1)求橢圓C的方程;
(2)直線l:x=my+3(m≠0)交橢圓C于M,N兩點(diǎn),設(shè)點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為N1(點(diǎn)N1與點(diǎn)M不重合),且直線N1M與x軸的交于點(diǎn)P,試問△PMN的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案