【題目】已知曲線C的參數(shù)方程是 (α為參數(shù))
(1)將C的參數(shù)方程化為普通方程;
(2)在直角坐標(biāo)系xOy中,P(0,2),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+ ρsinθ+2 =0,Q為C上的動(dòng)點(diǎn),求線段PQ的中點(diǎn)M到直線l的距離的最小值.

【答案】
(1)解:消去參數(shù)得,曲線C的普通方程得 =1
(2)解:將直線l 的方程化為普通方程為x+ y+2 =0.

設(shè)Q( cosα,sinα),則M( cosα,1+ sinα),

∴d= =

∴最小值是


【解析】(1)消去參數(shù),將C的參數(shù)方程化為普通方程;(2)將直線l 的方程化為普通方程為x+ y+2 =0.設(shè)Q( cosα,sinα),則M( cosα,1+ sinα),利用點(diǎn)到直線的距離公式,即可求線段PQ的中點(diǎn)M到直線l的距離的最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是AB,CD1的中點(diǎn),AA1=AD=1,AB=2.
(1)求證:EF∥平面BCC1B1
(2)求證:平面CD1E⊥平面D1DE;
(3)在線段CD1上是否存在一點(diǎn)Q,使得二面角Q﹣DE﹣D1為45°,若存在,求 的值,不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為 ,以直角坐標(biāo)系原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系。
(1)求曲線C的極坐標(biāo)方程;
(2)若直線 的極坐標(biāo)方程為 ,求直線 被曲線C截得的弦長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,兩焦點(diǎn)之間的距離為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點(diǎn)作直線交拋物線y2=4x于A,B兩點(diǎn),求證:OA⊥OB(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,an+2﹣2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求證:{an+1﹣an}是等差數(shù)列;
(2)求數(shù)列{ }的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在棱長為2的正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E,F(xiàn)分別是CC1 , AD的中點(diǎn),那么異面直線OE和FD1所成角的余弦值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+ b|< ;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(kx+a)ex的極值點(diǎn)為﹣a﹣1,其中k,a∈R,且a≠0.
(1)若曲線y=f(x)在點(diǎn)A(0,a)處的切線l與直線y=|2a﹣2|x平行,求l的方程;
(2)若a∈[1,2],函數(shù)f(x)在(b﹣ea , 2)上為增函數(shù),求證:e2﹣3≤b<ea+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若將函數(shù) 的圖象向右平移φ個(gè)單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案