在△ABC中,三邊a,b,c滿足a+c=2b.

(Ⅰ)求證

(Ⅱ)若,試判斷△ABC的形狀.

答案:
解析:

證明:()由已知2b=ac及正弦定理得2sinB=sinAsinC

2sinAC)=sinAsinC

A=B=C,因而△ABC為正三角形.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a、b、c與面積S的關(guān)系是S=
1
4
(a2+b2-c2),則角C應為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a、b、c所對的角分別為A、B、C,已知a=2
3
,b=2,△ABC的面積S=
3
,則C=
π
6
6
π
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a,c,b成等差,則sinA的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a、b、c與面積S的關(guān)系式為S=
1
4
(a2+b2-c2),則角C=
π
4
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三邊a,b,c成等差數(shù)列,B=30°,三角形ABC的面積為
1
2
,則b的值是( 。

查看答案和解析>>

同步練習冊答案